Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-11T08:03:08.654Z Has data issue: false hasContentIssue false

High-gain circularly polarized Fabry–Perot resonator antenna based on advanced polarization conversion metasurface

Published online by Cambridge University Press:  10 February 2025

Xin He
Affiliation:
Cyberspace Security Academy, Qufu Normal University, Qufu, China
Wenhua Qin
Affiliation:
Cyberspace Security Academy, Qufu Normal University, Qufu, China
Kaize Wang
Affiliation:
Cyberspace Security Academy, Qufu Normal University, Qufu, China
Juan Xu*
Affiliation:
Cyberspace Security Academy, Qufu Normal University, Qufu, China
*
Corresponding author: Juan Xu; Email: [email protected]

Abstract

In this paper, a novel polarization conversion metasurface (PCM) is proposed. Compared with the conventional receiver-transmitter metasurface units, two metallized via holes are set up to correct the current. It can achieve better polarization conversion from linear to circular and maintain a high reflectivity performance. A patch antenna with an L-probe feed is used as a feeder. The circularly polarized Fabry–Perot resonator antenna (CP-FPRA) consists of the PCM with a 5 × 5 array and a feeder. The measurements indicate a 3 dB axial ratio (AR) bandwidth of 8.6% (22.3–24.3 GHz). And it achieves a maximum gain of 14.2 dBic at 24 GHz, compared to the feed antenna has a gain enhancement of 5.5 dBi (from 8.7 dBi to 14.2 dBic). The proposed CP-FPRA has high gain, a wide AR, and a relatively low profile, providing ideas for subsequent antenna designs.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, K, Liu, Y, Jia, Y and Guo, YJ (2017) A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces. IEEE Transactions on Antennas and Propagation 65(8), 42884292. doi:10.1109/TAP.2017.2710231CrossRefGoogle Scholar
Zarbakhs, S, Akbari, M, Samadi, F and Sebak, A-R (2019) Broadband and high-gain circularly-polarized antenna with low RCS. IEEE Transactions on Antennas and Propagation 67(1), 1623. doi:10.1109/TAP.2018.2876234CrossRefGoogle Scholar
Ji, L-Y, Qin, P-Y, Guo, YJ, Ding, C, Fu, G and Gong, S-X (2016) A wideband polarization reconfigurable antenna with partially reflective surface. IEEE Transactions on Antennas and Propagation 64(10), 45344538. doi:10.1109/TAP.2016.2593716CrossRefGoogle Scholar
Zhang, J, Liu, Y, Jia, Y and Zhang, R (2022) High-gain Fabry–Pérot antenna with reconfigurable scattering patterns based on varactor diodes. IEEE Transactions on Antennas and Propagation 70(2), 922930. doi:10.1109/TAP.2021.3111234CrossRefGoogle Scholar
Orr, R, Goussetis, G and Fusco, V (2014) Design method for circularly polarized Fabry–Perot cavity antennas. IEEE Transactions on Antennas and Propagation 62(1), 1926. doi:10.1109/TAP.2013.2286839CrossRefGoogle Scholar
Liu, Z-G, Cao, Z-X and Wu, L-N (2016) Compact low-profile circularly polarized Fabry–Perot resonator antenna fed by linearly polarized microstrip patch. IEEE Antennas and Wireless Propagation Letters 15, 524527. doi:10.1109/LAWP.2015.2456886CrossRefGoogle Scholar
Sheersha, JA, Nasimuddin, N and Alphones, A (2019) A high gain wideband circularly polarized antenna with asymmetric metasurface. International Journal of RF and Microwave Computer-Aided Engineering 29(7), Art. no . doi:10.1002/mmce.21740CrossRefGoogle Scholar
Xie, P, Wang, G, Li, H, Liang, J and Gao, X (2020) Circularly polarized Fabry-Perot antenna employing a receiver–transmitter polarization conversion metasurface. IEEE Transactions on Antennas and Propagation 68(4), 32133218. doi:10.1109/TAP.2019.2950811CrossRefGoogle Scholar
Vaidya, AR, Gupta, RK, Mishra, SK and Mukherjee, J (2014) Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces. IEEE Antennas and Wireless Propagation Letters 13, 431434. doi:10.1109/LAWP.2014.2308926CrossRefGoogle Scholar
Xie, P and Wang, G (2023) Gain enhancement of circularly polarized Fabry-Perot resonator antenna using simple superstrate[J]. AEU-International Journal of Electronics and Communications 165, .Google Scholar
Lau, JY and Hum, SV (2012) A wideband reconfigurable transmitarray element. IEEE Transactions on Antennas and Propagation 60(3), 13031311. doi:10.1109/TAP.2011.2180475CrossRefGoogle Scholar
Pan, W, Huang, C, Ma, X, Jiang, B and Luo, X (2015) A dual linearly polarized transmitarray element with 1-bit phase resolution in X-band. IEEE Antennas and Wireless Propagation Letters 14, 167170. doi:10.1109/LAWP.2014.2358267CrossRefGoogle Scholar
Kaouach, H, Dussopt, L, Lanteri, J, Koleck, T and Sauleau, R (2011) Wideband low-loss linear and circular polarization transmit-arrays in V-band. IEEE Transactions on Antennas and Propagation 59(7), 25132523. doi:10.1109/TAP.2011.2152331CrossRefGoogle Scholar
Baena, JD, Glybovski, SB, Del Risco, JP, Slobozhanyuk, AP and Belov, PA (2017) Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces. IEEE Transactions on Antennas and Propagation 65(8), 41244133. doi:10.1109/TAP.2017.2717964CrossRefGoogle Scholar
Diaby, F, Clemente, A, Pham, KT, Sauleau, R and Dussopt, L (2018) Circularly polarized transmitarray antennas at Ka-band. IEEE Antennas and Wireless Propagation Letters 17(7), 12041208. doi:10.1109/LAWP.2018.2839021CrossRefGoogle Scholar
Trentini, GV (1956) Partially reflecting sheet arrays. IRE Transactions on Antennas and Propagation 4(4), 666671. doi:10.1109/TAP.1956.1144455CrossRefGoogle Scholar
Foroozesh, A and Shafai, L (2010) Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation 58(2), 258270. doi:10.1109/TAP.2009.2037702CrossRefGoogle Scholar
Yang, P, Yang, R and Li, Y (2021) Dual circularly polarized split beam generation by a metasurface sandwich-based Fabry–Pérot resonator antenna in Ku-band. IEEE Antennas and Wireless Propagation Letters 20(6), 933937. doi:10.1109/LAWP.2021.3067387CrossRefGoogle Scholar
Wang, Y and Zhang, A (2021) Dual circularly polarized Fabry–Perot resonator antenna employing a polarization conversion metasurface. IEEE Access 9, 4488144887. doi:10.1109/ACCESS.2021.3062460CrossRefGoogle Scholar
Liu, Z-G, Zhang, C, Yin, R-J and Lu, W-B (2022) Multifunctional low-profile Fabry–Perot resonator antenna integrated with solar cells. IEEE Transactions on Antennas and Propagation 70(8), 71757180. doi:10.1109/TAP.2022.3162020CrossRefGoogle Scholar