Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T07:13:58.818Z Has data issue: false hasContentIssue false

Graphical design method for unequal power dividers based on phase-balanced SIW tee-junctions

Published online by Cambridge University Press:  18 June 2013

Soraya Contreras*
Affiliation:
Lab-STICC, Télécom Bretagne, Technopôle Brest-Iroise, CS 83818, 29200 Brest Cedex 3, France. Phone: +33 229 00 10 15
Alain Peden
Affiliation:
Lab-STICC, Télécom Bretagne, Technopôle Brest-Iroise, CS 83818, 29200 Brest Cedex 3, France. Phone: +33 229 00 10 15
*
Corresponding author: S. Contreras Email: [email protected]

Abstract

This paper presents a detailed procedure to design substrate integrated waveguide (SIW) Tee-junctions with wide-range split-power ratio (from 1:1 to 1:8) and phase-balanced outputs. A set of curves was generated using an electromagnetic (EM) simulator to graphically determine the required parameters for the desired junction. Since such curves are provided, no further electromagnetic simulation is required when applying the proposed method. Input return loss at central frequency is guaranteed to be better than 18 dB. If an optimization procedure is required, the parameters obtained from this methodology may be used as initial values for such a process. Moreover, design rules are given for implementing 1 → 2N unequal power dividers with phase-balanced outputs. To demonstrate the accuracy of the proposed graphical method, three implementation examples are provided: two Tee-junctions and a 1 → 4 power divider.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kahn, W.K.: E-plane forked hybrid-T junction. IEEE Trans. Microw. Theory Tech., 3 (6) (1955), 5258.Google Scholar
[2]Marcuvitz, N.: Waveguide Handbook, Radiation Laboratory Series, vol. 10, McGraw-Hill, New York, 1951.Google Scholar
[3]Arnold, E.; Lyon, R.W.; Schlaud, A.; Solbach, K.; Tanner, J.S.: Design of a power divider network for a slotted waveguide array using finite element and finite difference techniques, in 8th Int. Conf. Antennas Propag., vol. 2, 1993, 831833.Google Scholar
[4]Yao, H.W.; Abdelmonem, A.; Liang, J.F.; Liang, X.-P.; Zaki, K.A.; Martin, A.: Waveguide and ridge waveguide T-junctions for wide band applications. IEEE MTT-S International Microw. Symp. Dig., 2 (1993), 601604.Google Scholar
[5]Christopher, S.; Abid Hussain, V.A.; Easwaran, M.S.; Dabade, V.N.: Design aspects of compact high power multiport unequal power dividers, in IEEE Int. Symp. Phased Array Systems and Technology, 1996, 6367.Google Scholar
[6]Hirokawa, J.; Sakurai, K.; Ando, M.; Goto, N.: An analysis of a waveguide T junction with an inductive post. IEEE Trans. Microw. Theory Tech., 39 (3) (1991), 563566.Google Scholar
[7]Wu, K.; Deslandes, D.; Cassivi, Y.: The substrate integrated circuits – a new concept for high-frequency electronics and optoelectronics, in 6th Int. Conf. Telecommunications in Modern Satellite, Cable and Broadcasting Service, vol. 1, 2003, P–III–P–X.Google Scholar
[8]Hirokawa, J.; Ando, M.: Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Trans. Antennas Propag., 46 (5) (1998), 625630.Google Scholar
[9]Huang, Y.; Lu, Y.: Design of a substrate integrated waveguide based 1-to-6 non-uniform power divider, in Microw. Conf., APMC Asia-Pacific, 2008, 14.Google Scholar
[10]Yang, S.; Fathy, A. E.: Synthesis of an arbitrary power split ratio divider using substrate integrated waveguides, in Microw. Symp., IEEE/MTT-S, 2007, 427430.Google Scholar
[11]He, F.; Wu, K.; Hong, W.; Han, L.; Xiao-Ping, C.: Low-cost 60-GHz smart antenna receiver subsystem based on substrate integrated waveguide technology. IEEE Trans. Microw. Theory Tech., 60 (4) (2012), 11561165.CrossRefGoogle Scholar
[12]Huang, Y.; Wu, K.-L.; Ehlert, M.: An integrated LTCC laminated waveguide-to-microstrip line T-junction. IEEE Microw. Wirel. Compon. Lett., 13 (8) (2003), 338339.CrossRefGoogle Scholar
[13]Abdolhamidi, M.; Enayati, A.; Shahabadi, M.; Faraji-Dana, R.: Wideband single-layer DC-decoupled substrate integrated waveguide (SIW) to microstrip transition using an interdigital configuration, in Microw. Conf., APMC Asia-Pacific, 2007, pp. 14.Google Scholar
[14]Ding, Y.; Wu, K.: Substrate integrated waveguide-to-microstrip transition in multilayer substrate. IEEE Trans Microw. Theory Tech., 55 (12) 2007, 23892844.Google Scholar
[15]Deslandes, D.; Wu, K.: Integrated microstrip and rectangular waveguide in planar form. IEEE Microw. Wirel. Compon. Lett., 11 (2) (2001), 6870.Google Scholar
[16]Xu, F., Wu, K. F., Wu, K.: Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech., 53 (1) (2005), 6673.Google Scholar
[17]Cassivi, Y.; Perregrini, L.; Arcioni, P.; Bressan, M.; Wu, K.; Conciauro, G.: Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microw. Wirel. Compon. Lett., 12 (9) (2002), 333335.CrossRefGoogle Scholar
[18]Eom, J.B.; Lee, H.-Y.: Multilayer substrate integrated waveguide four-way out-of-phase power divider. IEEE Trans.Microw. Theory Tech., 57 (12) (2009), 34693476.Google Scholar