Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T13:06:00.640Z Has data issue: false hasContentIssue false

Evaluation of coaxial cable performance under thermal gradients

Published online by Cambridge University Press:  30 March 2015

Sergio Colangeli*
Affiliation:
Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy. Phone: +39 7259 7343
Riccardo Cleriti
Affiliation:
Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy. Phone: +39 7259 7343
Walter Ciccognani
Affiliation:
Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy. Phone: +39 7259 7343
Ernesto Limiti
Affiliation:
Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy. Phone: +39 7259 7343
*
Corresponding author: S. Colangeli Email: [email protected]

Abstract

This paper presents a very flexible tool for numerically evaluating the small-signal and noise parameters of a transmission line subject to an arbitrary thermal gradient. Contrary to previous methods, the proposed approach allows straightforwardly taking into account possible variations of electrical parameters along the propagation direction, such as may be expected when temperature ranges between very different values. The main application of the proposed method is cable modeling in noise-figure measurement setups under cryogenic operation: in such circumstances, indeed, the coaxial cables (or waveguide) at the interface between the outside and the inside of the cryogenic chamber are subject to remarkable temperature excursions. As a consequence, significant de-embedding errors may arise if the cables are not correctly modeled, given the very low values of noise figure which are commonly exhibited by cryo-cooled active devices.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schleeh, J.; Rodilla, H.; Wadefalk, N.; Nilsson, P.; Grahn, J.: Characterization and modeling of cryogenic ultralow-noise InP HEMTs. IEEE Trans. Electron Devices, 60 (1) (2013), 206212. DOI: 10.1109/ted.2012.2227485.Google Scholar
[2] Samoska, L. et al. : W-band cryogenic InP MMIC LNAs with noise below 30 K, in 2012 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2012, 1–3. DOI: 10.1109/mwsym.2012.6258356.CrossRefGoogle Scholar
[3] Bryerton, E.W.; Morgan, M.; Pospieszalski, M.W.: Ultra low noise cryogenic amplifiers for radio astronomy, in 2013 IEEE Radio and Wireless Symp. (RWS), 2013, 358–360. DOI: 10.1109/rws.2013.6486740.Google Scholar
[4] Klauda, M. et al. : Superconductors and cryogenics for future communication systems. IEEE Trans. Microw. Theory Tech., 48 (7) (2000), 12271239. DOI: 10.1109/22.853466.Google Scholar
[5] Narahashi, S.; Satoh, K.; Kawai, K.; Koizumi, D.: Cryogenic receiver front-end for mobile base stations, in 2008 China-Japan Joint Microwave Conference, 2008, 619–622. DOI: 10.1109/cjmw.2008.4772507.Google Scholar
[6] Colangeli, S.; Ciccognani, W.; Palomba, M.; Limiti, E.: Automated extraction of device noise parameters based on multi-frequency, source-pull data. Int. J. Microw. Wirel. Technol., 6 (1) (special issue), Feb. (2014), 6372. DOI: 10.1017/S1759078713000822.Google Scholar
[7] Wiatr, W.: Comments on “Cryogenic noise parameter measurements of microwave devices”. IEEE Trans. Instrum. Meas., 53 (2) (2004), 619. DOI: 10.1109/tim.2004.823649.Google Scholar
[8] Rolfes, I.; Musch, T.; Schiek, B.: Cryogenic noise parameter measurements of microwave devices. IEEE Trans. Instrum. Meas., 50 (2) (2001), 373376. DOI: 10.1109/19.918145.Google Scholar
[9] Wait, D.F.: Measurement accuracies for various techniques for measuring amplifier noise, in 39th ARFTG Conf. Digest-Spring, vol. 21, 1992, 43–52. DOI: 10.1109/arftg.1992.326971.Google Scholar
[10] Pospieszalski, M.W.: Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence. IEEE Trans. Microw. Theory Tech., 37 (9) (1989), 13401350. DOI: 10.1109/22.32217.Google Scholar
[11] Lane, R.Q.: The determination of device noise parameters. Proc. IEEE, 57 (8) (1969), 14611462. DOI: 10.1109/proc.1969.7311.CrossRefGoogle Scholar
[12] Limiti, E.; Ciccognani, W.; Colangeli, S.: Characterization and modeling of high-frequency active devices, in Microwave De-embedding – from Theory to Applications, chapter 3. Crupi, G. and Schreurs, D. (Eds.) Oxford (The Boulevard, Langford Lane, kidlington, Oxford OX5 1GB, UK) 2013, 97150.Google Scholar
[13] Delcourt, S. et al. : On-wafer high frequency noise power measurements under cryogenic conditions: a new de-embedding approach, in 2004. 34th Eur. Microwave Conf., vol. 2, 2004, 913–916.Google Scholar
[14] Stelzried, C.T.: Microwave thermal noise standards. IEEE Trans. Microw. Theory Tech., 16 (9) (1968), 646655. DOI: 10.1109/tmtt.1968.1126767.CrossRefGoogle Scholar
[15] Hillbrand, H.; Russer, P.: An efficient method for computer aided noise analysis of linear amplifier networks. IEEE Trans. Circuits Syst., 23 (4) (1976), 235238. DOI: 10.1109/tcs.1976.1084200.Google Scholar
[16] Hillbrand, H.; Russer, P.: Correction to “An efficient method for computer aided noise analysis of linear amplifier networks”. IEEE Trans. Circuits Syst., 23 (11) (1976), 691–691. DOI: 10.1109/tcs.1976.1084145.CrossRefGoogle Scholar
[17] Colangeli, S.: Numerical evaluation of cable noise parameters under cryogenic thermal gradients, in EuMIC, 2014.Google Scholar