Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T06:41:25.408Z Has data issue: false hasContentIssue false

Discussion of the operating range of frequency modulated radars in the presence of interference

Published online by Cambridge University Press:  19 March 2014

Tom Schipper*
Affiliation:
Institut für Hochfrequenztechnik und Elektronik, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. Phone: +49 721 608 46256
Marlene Harter
Affiliation:
Institut für Hochfrequenztechnik und Elektronik, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. Phone: +49 721 608 46256
Tobias Mahler
Affiliation:
Institut für Hochfrequenztechnik und Elektronik, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. Phone: +49 721 608 46256
Oliver Kern
Affiliation:
Institut für Hochfrequenztechnik und Elektronik, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. Phone: +49 721 608 46256
Thomas Zwick
Affiliation:
Institut für Hochfrequenztechnik und Elektronik, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. Phone: +49 721 608 46256
*
Corresponding author T. Schipper Email: [email protected]

Abstract

This paper discusses the operating range of frequency modulated (FM) radars in the presence of interference. For this purpose, radar- and path loss equations are used to draw the equipotential lines for a given signal-to-interference ratio as a function of the spatial distribution of targets and interferers in order to identify relevant scenario constellations. Further the factors influencing the gain of signal versus deterministic interference are discussed based on measurements and simulations. Finally, the influence of different kinds of interference on the spectrum of a frequency modulated continuous wave radar is shown.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kunert, M.; Meinel, H.; Fischer, C.; Ahrholdt, M.: Report on Interference Density Increase by Market Penetration Forecast, MOSARIM consortium, CNTR 248 231, Tech. Rep. D1.6, September 2010.Google Scholar
[2]Hischke, M.: Collision warning radar interference, in Proc. Intelligent Veh. Symp., September 1995, 13–18.Google Scholar
[3]Tullsson, B.-E.: Topics in FMCW radar disturbance suppression, in Radar 97 (Conf. Publ. No. 449), 1997, 1–5.Google Scholar
[4]Oprisan, D.; Rohling, H.: Analysis of mutual interference between automotive radar systems, in Int. Radar Symp., Berlin, September 2005, 1–4.Google Scholar
[5]Brooker, G.: Mutual interference of millimeter-wave radar systems. IEEE Trans. Electromagn. Compat., 49 (1) (2007), 170181.Google Scholar
[6]Goppelt, M.; Blöcher, H.-L.; Menzel, W.: Analytical investigation of mutual interference between automotive FMCW radar sensors, in European Microwave Conf., March 2011, 1–4.Google Scholar
[7]Braun, M.; Tanbourgi, R.; Jondral, F.K.: Co-channel interference limitations of OFDM communication-radar networks. J. Wirel. Commun. Netw., 2013 (1), article 207.Google Scholar
[8]Fischer, C.; Barjenbruch, M.; Bloecher, H.; Menzel, W.: Detection of pedestrians in road environments with mutual interference, in 14th Int. Radar Symp., vol. 2, 2013, 746–751.Google Scholar
[9]Schipper, T.; Mahler, T.; Harter, M.; Reichardt, L.; Zwick, T.: An estimation of the operating range for frequency modulated radars in the presence of interference, in European Radar Conf., 2013, 227–230.Google Scholar
[10]Reichardt, L.; Maurer, J.; Fügen, T.; Zwick, T.: Virtual drive: a complete V2X communication and radar system simulator for optimization of multiple antenna systems. Proc. IEEE, 99 (7) (2011), 12951310.Google Scholar
[11]Schipper, T.; Harter, M.; Zwirello, L.; Mahler, T.; Zwick, T.: Systematic approach to investigate and counteract interference-effects in automotive radars, in European Radar Conf., November 2012, 190–193.Google Scholar
[12]Schipper, T.; Prophet, S.; Zwirello, Z.; Harter, M.; Reichardt, L.; Zwick, T.: Simulation framework for the estimation of future interference simulations between automotive radars, in Int. Symp. Antennas and Propag., July 2013.Google Scholar
[13]Pace, P.E.: Detecting and Classifying Low Probability of Intercept Radar, Artech House radar library, Artech House, 2004.Google Scholar
[14]Schipper, T.; Fortuny-Guasch, J.; Tarchi, D.; Reichardt, L.; Zwick, T.: RCS measurement results for automotive related objects at 23–27 GHz, in Proc. European Conf. Antennas and Propag., April 2011, 683–686.Google Scholar
[15]Fortuny-Guasch, J.; Chareau, J.-M.: Radar Cross Section Measurements of Pedestrian Dummies and Humans in the 24/77 GHz Frequency Bands, European Commission – Joint Research Center – Institute for the Protection and Security of the Citizen, http://ipsc.jrc.ec.europa.eu/, Tech. Rep. EUR 25762 EN, 2013.Google Scholar
[16]Harter, M.; Schipper, T.; Zwirello, L.; Ziroff, A.; Zwick, T.: 24 GHz digital beamforming radar with T-shaped antenna array for Three-Dimensional object detection. Int. J. Microw. Wirel. Technol., 4 (2012), 327334.Google Scholar
[17]Harter, M.; Ziroff, A.; Zwick, T.: Three-dimensional radar imaging by digital beamforming, in European Radar Conf., October 2011, 17–20.Google Scholar
[18]Harris, F.: On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc. IEEE, 66 (1) (1978), 5183.Google Scholar