Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T16:01:36.706Z Has data issue: false hasContentIssue false

Digital I/Q imbalance correction for full-duplex dual-band OFDM radio transceivers

Published online by Cambridge University Press:  06 July 2015

Zhaowu Zhan*
Affiliation:
Université de Lyon, INRIA, INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France. Phone: +33 650 24 23 54
Guillaume Villemaud
Affiliation:
Université de Lyon, INRIA, INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France. Phone: +33 650 24 23 54
Florin Hutu
Affiliation:
Université de Lyon, INRIA, INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France. Phone: +33 650 24 23 54
Jean-Marie Gorce
Affiliation:
Université de Lyon, INRIA, INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France. Phone: +33 650 24 23 54
*
Corresponding author: Z. Zhan Email: [email protected]

Abstract

This paper presents a full-duplex dual-band orthogonal frequency division duplexing (OFDM) radio architecture that enables the radio transceiver to be more flexible and provides a viable radio link capacity gain. A simple but practical I/Q imbalance estimation and compensation method, based on the frequency-flat-fading behavior of the self-interference channel, is proposed. The performance of the proposed I/Q imbalance compensation method is evaluated by link level simulation conducted with Advanced Design System and Matlab. The co-simulation results show that the proposed radio transceiver could potentially increase the physical layer transmission rate by four times compared with the conventional radio link at the cost of tolerable loss of bit error rate performance. The I/Q imbalance compensation method can effectively compensate both high and low I/Q imbalance without the problem of algorithm convergence.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Zhan, Z.; Villemaud, G.; Hutu, F.; Gorce, J.-M.: Full-duplex dual-band radio dedicated to flexible radio system, INRIA Research Report, RR-8558, July 2014.Google Scholar
[2]Duarte, M.; Sabharwal, A.: Full-duplex wireless communication using off-the-shelf radios: feasibility and first results, in IEEE Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, 2009, 15581562.CrossRefGoogle Scholar
[3]Jain, M. et al. : Practical real-time full-duplex wireless, in ACM Mobicom, Las Vegas, Nevada, 2011, 301312.Google Scholar
[4]Burciu, I.; Villemaud, G.; Verdier, J.; Gautier, M.: Low power front-end architecture dedicated to the multistandard simultaneous reception. Cambridge Int. J. Microw. Wireless Technol., 2 (6) (2010), 504514.Google Scholar
[5]Hahmoud, H.; Yucek, T.; Arslan, H.: OFDM for cognitive radio: merits and challenges. IEEE Wireless Commun., 16 (2) (2009), 615.Google Scholar
[6]Khandani, A.K.: Methods for spatial multiplexing of wireless two-way channels, US Patent, 2010.Google Scholar
[7]Khandani, A.K.: Two-way (true full-duplex) wireless, in 13th Canadian Workshop on Information Theory, 2013, 3338.CrossRefGoogle Scholar
[8]Choi, J.; Jain, M.; Srinivasan, K.; Levis, P.; Katti, S.: Achieving single channel, full-duplex wireless communications, in ACM MobiCom, Chicago, Illinois, 2010, 112.CrossRefGoogle Scholar
[9]Aryafar, E.; Khojastpour, M.; Sundaresan, K.; Rangarajan, S.; Chiang, M.: MIDU: enabling MIMO full-duplex, in ACM MobiCom, Istanbul, Turkey, 2012, 257268.Google Scholar
[10]Mohammad, A.; Sundaresan, K.; Rangarajan, S.; Zhang, X.; Barghi, S.: The case for antenna cancellation for scalable full-duplex wireless communications, in ACM Hotnets, Cambridge, MA, USA, 2011, doi:10.1145/2070562.2070579.Google Scholar
[11]Everett, E.; Sahai, A.; Sabharwal, A.: Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Trans. Wireless Commun., 13 (2) (2014), 680694.Google Scholar
[12]Sahai, A.; Patel, G.; Sabharwal, A.: Pushing the limits of Full-Duplex: design and real-time implementation, Rice University, Technical Report TREE1104, 2011, 112.Google Scholar
[13]Kaufman, B.; Lilleberg, J.; Aazhang, B.: Analog baseband cancellation for full-duplex: an experiment driven analysis, online: http://arxiv.org/pdf/1312.0522v1.pdfGoogle Scholar
[14]Tarighat, H.; Bagheri, R.; Sayed, A.: Compensation schemes and performance analysis of IQ imbalance in OFDM receivers. IEEE Trans. Signal Process., 53 (8) (2005), 32573268.Google Scholar
[15]Sohn, I.; Jeong, E.; Lee, Y.: Data-aided approach to I/Q mismatch and DC offset compensation in communication receivers. IEEE Commun. Lett., 6 (12) (2002), 547549.Google Scholar
[16]Windisch, M.; Fettweis, G.: Preamble design for an efficient I/Q compensation in OFDM direct-conversion receivers, in 10th Int. OFDM Workshop, 2005.Google Scholar
[17]Tubbax, J. et al. : Compensation of IQ imbalance and phase noise in OFDM systems. IEEE Trans. Wireless Commun., 4 (3) (2005), 872877.Google Scholar
[18]Yu, J.; Sun, M.; Hus, T.; Lee, C.: A novel technique for I/Q imbalance and CFO compensation in OFDM systems, in IEEE Int. Symp. on Circuit and Systems, 2005, 60306033.Google Scholar
[19]Windisch, M.; Fettweis, G.: Standard-independent I/Q imbalance compensation in OFDM direct-conversion receivers, in 9th Int. OFDM workshop, 2004, 5761.Google Scholar
[20]Traverso, S.; Ariaudo, M.; Fijalkow, I.; Gautier, J.; Lereau, C.: Decision-directed channel estimation and high I/Q imbalance compensation in OFDM receivers. IEEE Trans. Commun., 57 (5) (2009), 12461249.Google Scholar
[21]Gil, G.; Kim, Y.; Lee, Y.: Non-data-aided approach to I/Q mismatch compensation in low-IF receivers. IEEE Trans. Signal Process., 55 (7) (2007), 33603365.Google Scholar
[22]Windisch, M.; Fettweis, G.: Blind I/Q imbalance parameter estimation and compensation in low-IF receivers, in First Int. Symp. on Control, Communications and Signal Processing, 2004, 7578.Google Scholar
[23]Bharadia, D.; McMilin, E.; Katti, S.: Full-Duplex radios, in ACM SigCom, Hongkong, China, 2013, 375386.Google Scholar
[24]Hong, S.; McMilin, E.; Katti, S.: Picasso: flexible RF and spectrum slicing, in ACM SigCom, Helsinki, Finland, 2012, 3748.Google Scholar
[25]Sabharwal, A.; Schniter, P.; Guo, D.; Bliss, D.-W.; Rangarajan, S.; Wichman, R.: In-band full-duplex wireless: challenges and opportunities. IEEE J. Select. Areas Commun., 32 (9) (2014), 16371652.Google Scholar
[26]Duarte, M.; Dick, C.; Sabharwal, A.: Experiment driven characterization of full-duplex wireless communications. IEEE Trans. Wireless Commun., 11 (12) (2012), 505514.Google Scholar
[27]Zhan, Z.; Villemaud, G.; Gorce, J.-M.: Design and evaluation of a wideband full-duplex OFDM system based on AASIC, in IEEE 24th Annual Int. Symp. on Personal, Indoor and Mobile Radio Communication, London, UK, 2014, 6872.Google Scholar
[28]Zhan, Z.; Villemaud, G.; Gorce, J.-M.: Analysis and reduction of the impact of thermal noise on the full-duplex OFDM radio, in IEEE Radio and Wireless Symp., Newport Beach, CA, 2014, 220223.Google Scholar
[29]Cabric, D.; Mishra, S.; Brodersen, R.: Implementation issues in spectrum sensing for cognitive radios, in IEEE Asilomar Conf. on Signals, Systems and Computers, 2014, 772776.Google Scholar
[30]Choi, Y.; Hooman, S.: Simultaneous transmission and reception: algorithm, design ans system level performance. IEEE Trans. Wireless Commun., 12 (12) (2013), 59926010.Google Scholar
[31]Schmidl, T.M.; Cox, D.: Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun., 45 (12) (1997), 16131621.Google Scholar
[32]Minn, H.; Bhargava, V.K.; Letaief, K.B.: A robust timing and frequency synchronization for OFDM systems. IEEE Trans. Wireless Commun., 2 (4) (2003), 822839.CrossRefGoogle Scholar