Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T08:33:26.113Z Has data issue: false hasContentIssue false

Design of non-uniform concentric circular antenna arrays with optimal sidelobe level reduction using biogeography-based optimization

Published online by Cambridge University Press:  14 May 2014

Nihad Dib*
Affiliation:
Electrical Engineering Department, Jordan University of Science & Technology, P. O. Box 3030, Irbid 22110, Jordan
Ashraf Sharaqa
Affiliation:
Communication and Security Projects Division, WorleyParsons Arabia Ltd.P. O. Box 31699, Al-Khobar 31952, Saudi Arabia
*
Corresponding author: N. Dib Email: [email protected]

Abstract

This paper presents the design of non-uniform concentric circular antenna arrays (CCAAs) of isotropic radiators with optimum sidelobe level (SLL) reduction. The biogeography-based optimization (BBO) method is used to determine an optimum set of excitation amplitudes that provide a radiation pattern with optimum SLL reduction with the constraint of a fixed major lobe beamwidth. The BBO method represents a new global evolutionary algorithm for optimization problems in electromagnetics. It is shown that the BBO results provide an SLL reduction that is comparable to that obtained using well-known algorithms, such as the particle swarm optimization (PSO), genetic algorithm (GA), and evolutionary programming (EP). Moreover, BBO results are compared with those obtained using the Matlab function Fmincon which uses a sequential quadratic programming (SQP) method. The comparison shows that the design of non-uniformly excited CCAAs using the SQP method provides a SLL reduction that is better than that obtained using global stochastic optimization methods, indicating that global optimization techniques might not really be needed in this problem.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Balanis, C.A.: Antenna Theory: Analysis and Design, John Wiley & Sons, New York, 1997.Google Scholar
[2]Mandal, D.; Chandra, A.; Ghoshal, S.; Bhattacharjee, A.: Side lobe reduction of a concentric circular antenna array using genetic algorithm. Serb. J. Electr. Eng., 7 (2) (2010), 141148.CrossRefGoogle Scholar
[3]Mandal, D.; Ghoshal, S.; Bhattacharjee, A.: Optimal design of concentric circular antenna array using particle swarm optimization with constriction factor approach. Int. J. Comput. Appl., 1 (17) (2010), 9498.Google Scholar
[4]Mandal, D.; Ghoshal, S.; Bhattacharjee, A.: Application of evolutionary optimization techniques for finding the optimal set of concentric circular antenna array. Expert Syst. Appl., 38 (2011), 29422950.CrossRefGoogle Scholar
[5]Mandal, D.; Ghoshal, S.; Bhattacharjee, A.: Radiation pattern optimization for concentric circular antenna array with central element feeding using craziness-based particle swarm optimization. Int. J. RF Microw. Comput. Aided Eng., 20 (2010), 577586.Google Scholar
[6]Mandal, D.; Ghoshal, S.; Bhattacharjee, A.: Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programming technique. J. Infrared Milli. Terahz Waves, 31 (2010), 667680.Google Scholar
[7]Mandal, D.; Ghoshal, S.; Bhattacharjee, A.: Determination of the optimal design of three-ring concentric circular antenna array using evolutionary optimization techniques. Int. J. Recent Trends Eng., 2 (5) (2009), 110115.Google Scholar
[8]Mandal, D.; Ghoshal, S.; Bhattacharjee, A.: Novel particle swarm optimization based synthesis of concentric circular antenna array for broadside radiation. Swarm Evol. Memet. Comput. Lect. Notes Comput. Sci., 6466 (2010), 432439.Google Scholar
[9]Ghosh, P.; Das, S.: Synthesis of thinned planar concentric circular antenna arrays – a differential evolutionary approach. Prog. Electromagn. Res. B, 29 (2011), 6382.Google Scholar
[10]Chatterjee, A.; Mahanti, G.; Pathak, N.: Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna. Prog. Electromagn. Res. B, 25 (2010), 331348.Google Scholar
[11]Haupt, R.L.: Optimized element spacing for low sidelobe concentric ring arrays. IEEE Trans. Antennas Propag., 56 (1) (2008), 266268.Google Scholar
[12]Pal, S.; Basak, A.; Das, S.; Abraham, A.; Zelinka, I.: Concentric circular antenna array synthesis using a differential invasive weed optimization algorithm, in Int. Conf. Soft Computing and Pattern Recognition, Paris, 2010, 395–400.Google Scholar
[13]Sharaqa, A.; Dib, N.: Circular antenna array synthesis using firefly algorithm. Int. J. RF Microw. Comput. Aided Eng., 24 (2014), 139146.Google Scholar
[14]Yang, S.; Kiang, J.: Two-dimensional pattern synthesis of stacked concentric circular antenna arrays using bee colony algorithms. Prog. Electromagn. Res. B, 55 (2013), 151168.Google Scholar
[15]Dib, N.; Sharaqa, A.: Synthesis of thinned concentric circular antenna array using teaching-learning-based optimization. Int. J. RF Microw. Comput. Aided Eng., doi: 10.1002/mmce.20784.Google Scholar
[16]Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput., 12 (6) (2008), 702713.Google Scholar
[17]Simon, D.; Ergezer, M.; Du, D.; Rarick, R.: Markov models for biogeography-based optimization. IEEE Trans. Syst. Man Cybern. B, Cybern., 41 (1) (2011), 299306.Google Scholar
[18]Roy, P.; Ghoshal, S.; Thakur, S.: Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function. Expert Syst. Appl., 37 (12) (2010), 82218228.Google Scholar
[19]Bhattacharya, A.; Chattopadhyay, P.: Hybrid differential evolution with biogeography based optimization for solution of economic load dispatch. IEEE Trans. Power Syst., 25 (4) (2010), 19551964.Google Scholar
[20]Bhattacharya, A.; Chattopadhyay, P.: Solution of optimal reactive power flow using biogeography-based optimization. Int. J. Energy Power Eng., 3 (4) (2010), 269277.Google Scholar
[21]Herbadji, O.; Slimani, L.; Bouktir, T.: Biogeography based optimization approach for solving optimal power flow problem. Int. J. Hybrid Inf. Technol., 6 (5) (2013), 183196.Google Scholar
[22]Singh, U.; Singla, H.; Kamal, T.: Design of Yagi–Uda antenna using biogeography based optimization. IEEE Trans. Antennas Propag., 58 (10) (2010), 33753379.Google Scholar
[23]Lohokare, M.; Pattnaik, S.; Devi, S.; Panigrahi, B.; Bakwad, K.; Joshi, J.: Modified BBO and calculation of resonant frequency of circular microstrip antenna, in World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, December 2009, 487–492.CrossRefGoogle Scholar
[24]Lohokare, M.; Pattnaik, S.; Devi, S.; Panigrahi, B.; Bakwad, K.; Joshi, J.: Parameter calculation of rectangular microstrip antenna using biogeography-based optimization, in Applied Electromagnetics Conference, Coimbatore, India, December 2009.Google Scholar
[25]Singh, U.; Kumar, H.; Kamal, T.: Linear array synthesis using biogeography based optimization. Prog. Electromagn. Res. M, 11 (2010), 2536.Google Scholar
[26]Sharaqa, A.; Dib, N.: Design of linear and elliptical antenna arrays using biogeography based optimization. Arab. J. Sci. Eng. (AJSE), doi: 10.1007/s13369-013-0794-8.Google Scholar
[27]Sharaqa, A.; Dib, N.: Design of linear and circular antenna arrays using biogeography based optimization, in 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT 2011), Amman, Jordan, December 2011.Google Scholar
[28]Sharaqa, A.; Dib, N.: On the optimal design of non-uniform concentric circular antenna arrays, in 2012 IEEE Antennas and Propagation Society International Symposium, Chicago, USA, July 2012.Google Scholar
[29]Dib, N.; Sharaqa, A.: On the optimal design of non-uniform circular antenna arrays. J. Appl. Electromagn., 14 (1) (2012), 4259.Google Scholar
[30]Singh, U.; Kamal, T.: Synthesis of thinned planar concentric circular antenna arrays using biogeography-based optimization. IET Microw. Antennas Propag., 6 (7) (2012), 822829.CrossRefGoogle Scholar
[31]Dib, N.; Sharaqa, A.; Formato, R.: Variable Z0 applied to the optimal design of multi-stub matching network and a meander monopole. Int. J. Microw. Wirel. Technol., available on CJO2013. doi: 10.1017/S1759078713001049.Google Scholar
[33]Bucci, O.; D'Urso, M.; Isernia, T.: Some facts and challenges in array antenna synthesis problems. AUTOMATICA- J. Control Meas. Electron. Comput. Commun., 49 (2008), 1320.Google Scholar