Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T22:33:17.525Z Has data issue: false hasContentIssue false

Design of monopole antennas based on progressive Gaussian process

Published online by Cambridge University Press:  07 March 2022

Xie Zheng
Affiliation:
School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
Fei Meng
Affiliation:
School of Information and Communication Engineering, Guangzhou Maritime University, Guangzhou 510725, Guangdong, China
Yubo Tian*
Affiliation:
School of Information and Communication Engineering, Guangzhou Maritime University, Guangzhou 510725, Guangdong, China
Xinyu Zhang
Affiliation:
School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
*
Author for correspondence: Yubo Tian, E-mail: [email protected]

Abstract

Electromagnetic simulation software has become an important tool for antenna design. However, high-fidelity simulation of wideband or ultra-wideband antennas is very expensive. Therefore, antenna optimization design by using an electromagnetic solver may be limited due to its high computational cost. This problem can be alleviated by the utilization of fast and accurate surrogate models. Unfortunately, conventional surrogate models for antenna design are usually prohibitive because training data acquisition is time-consuming. In order to solve the problem, a modeling method named progressive Gaussian process (PGP) is proposed in this study. Specially, when a Gaussian process (GP) is trained, test sample with the largest predictive variance is inputted into an electromagnetic solver to simulate its results. After that, the test sample is added to the training set to train the GP progressively. The process can incrementally increase some important trusted training data and improve the model generalization performance. Based on the proposed PGP, two monopole antennas are optimized. The optimization results show effectiveness and efficiency of the method.

Type
Antenna Design, Modeling and Measurements
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Xie Zheng and Fei Meng are co-first authors.

References

Jin, N and Rahmat-Samii, Y (2007) Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Transactions on Antennas and Propagation 55, 556567.CrossRefGoogle Scholar
Tian, YB and Qian, J (2005) Improve the performance of a linear array by changing the spaces among array elements in terms of genetic algorithm. IEEE Transactions on Antennas and Propagation 53, 22262230.CrossRefGoogle Scholar
Deb, A, Roy, JS and Gupta, B (2014) Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas. IEEE Transactions on Antennas and Propagation 62, 39203928.CrossRefGoogle Scholar
Koziel, S, Ogurtsov, S, Zieniutycz, W and Bekasiewicz, A (2014) Design of a planar UWB dipole antenna with an integrated balun using surrogate-based optimization. IEEE Antennas and Wireless Propagation Letters 14, 366369.CrossRefGoogle Scholar
Liu, B, Yang, H and Lancaster, MJ (2017) Global optimization of microwave filters based on a surrogate model-assisted evolutionary algorithm. IEEE Transactions on Microwave Theory and Techniques 65, 19761985.CrossRefGoogle Scholar
Jin, J, Zhang, C, Feng, F, Na, W, Ma, J and Zhang, QJ (2019) Deep neural network technique for high-dimensional microwave modeling and applications to parameter extraction of microwave filters. IEEE Transactions on Microwave Theory and Techniques 67, 41404155.CrossRefGoogle Scholar
Tian, YB, Zhang, SL and Li, JY (2011) Modeling resonant frequency of microstrip antenna based on neural network ensemble. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 24, 7888.Google Scholar
Prado, DR, Lopez, JA, Barquero, G, Arrebola, M and Las, HF (2018) Fast and accurate modeling of dual-polarized reflectarray unit cells using support vector machines. IEEE Transactions on Antennas and Propagation 66, 12581270.CrossRefGoogle Scholar
Sun, FY, Tian, YB, Hu, GB and Shen Q, Y (2019) DOA estimation based on support vector machine ensemble. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 32, e2614.CrossRefGoogle Scholar
Rasmussen, CE and Williams, CKI (2006) Gaussian processes for machine learning. International Journal of Neural Systems 11, 14.Google Scholar
Wu, Q, Wang, H and Hong, W (2020) Multistage collaborative machine learning and its application to antenna modeling and optimization. IEEE Transactions on Antennas and Propagation 68, 33973409.CrossRefGoogle Scholar
Chen, F and Tian, YB (2014) Modeling resonant frequency of rectangular microstrip antenna using CUDA-based artificial neural network trained by particle swarm optimization algorithm. Applied Computational Electromagnetics Society Journal 29.12.Google Scholar
Chen, Y, Tian, YB and Le, M (2017) Modeling and optimization of microwave filter by ADS-based KBNN. International Journal of RF and Microwave Computer-Aided Engineering 27, e21062.CrossRefGoogle Scholar
Angiulli, G, Cacciola, M and Versaci, M (2007) Microwave devices and antennas modelling by support vector regression machines. IEEE Transactions on Magnetics 43, 15891592.CrossRefGoogle Scholar
Sun, FY, Tian, YB and Ren, ZL (2016) Modeling the resonant frequency of compact microstrip antenna by the PSO-based SVM with the hybrid kernel function. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 29, 11291139.Google Scholar
Jacobs, JP and De Villiers, JP (2010) Gaussian-process-regression based design of ultrawideband and dual-band CPW-fed slot antennas. Journal of Electromagnetic Waves and Applications 24, 17631772.CrossRefGoogle Scholar
Gao, J, Tian, YB and Chen, XZ (2020) Antenna optimization based on co-training algorithm of Gaussian process and support vector machine. IEEE Access 8, 211380211390.CrossRefGoogle Scholar
Zhang, XY, Tian, YB and Zheng, X (2020) Antenna optimization design based on deep Gaussian process model. International Journal of Antennas and Propagation 4, 110.Google Scholar
Chen, XZ, Tian, YB, Zhang, TL and Gao, J (2020) Differential evolution based manifold Gaussian process machine learning for microwave filter's parameter extraction. IEEE Access 8, 146450146462.CrossRefGoogle Scholar
Gao, J, Tian, YB, Zheng, X and Chen, XZ (2020) Resonant frequency modeling of microwave antennas using Gaussian process based on semisupervised learning. Complexity 2020, 64506462.CrossRefGoogle Scholar
Zhou, Z, Ong, YS, Nair, PB, Keane, AJ and Lum, KY (2006) Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C 37, 6676.CrossRefGoogle Scholar
Kennedy, J and Eberhart, R (1995) Particle swarm optimization. IEEE International Conference on Neural Networks, Perth, WA, Australia, pp. 19421948.CrossRefGoogle Scholar
Tian, YB (2014) Particle Swarm Optimization and Application in Electromagnetics. Beijing, China: Science Press.Google Scholar
William, G and Gertrude, MC (1992) Experimental Designs, 2nd Edn. Wiley, USA: Soil Science Society of America Journal.Google Scholar
Wang, CJ and Hsu, CW (2017) A microstrip wideband monopole antenna for multisystem integration by utilizing stepped-impedance structure and L-shaped slot. International Journal of RF and Microwave Computer-Aided Engineering 27, e21086.CrossRefGoogle Scholar
Thaiwirot, W, Chareonsiri, Y and Akkaraekthalin, P (2015) A compact band-notched step-slot antenna for UWB applications. IEEE Conference on Antenna Measurements and Applications (CAMA), Chiang Mai, Thailand, pp. 14.CrossRefGoogle Scholar