Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T12:58:38.098Z Has data issue: false hasContentIssue false

Design of dual band-notched lamp-shaped antenna with UWB characteristics

Published online by Cambridge University Press:  05 November 2015

Swati Yadav
Affiliation:
Department of Electronics & Communication Engineering, G. B. Pant Engineering College, Pauri Garhwal, Uttarakhand-246 194, India. Phone: +91 8979 719 397
Anil Kumar Gautam*
Affiliation:
Department of Electronics & Communication Engineering, G. B. Pant Engineering College, Pauri Garhwal, Uttarakhand-246 194, India. Phone: +91 8979 719 397
Binod Kumar Kanaujia
Affiliation:
Department of Electronics & Communication Engineering, Ambedkar Institute of Advanced Communication Technologies & Research, Geeta Colony, Delhi-110031, India
*
Corresponding author: A. K. Gautam Email: [email protected]

Abstract

To restrict electromagnetic interference at WiMAX (3.3–3.7 GHz) and wireless local area network (WLAN) (5.15–5.825 GHz) bands operating within ultra wide bandwidth (UWB) band, a novel design of lamp-shaped UWB microstrip antenna with dual band-notched characteristics is presented. The proposed antenna is composed of a lamp-shaped radiating patch with two rectangular ground planes on both the sides of the radiator with the gap of 0.57 mm. To improve impedance mismatch at middle frequencies, two triangular strips one at each of the ground plane are added; whereas a rectangular slot is etched in the radiating patch to remove impedance mismatch at higher frequencies of the UWB band. Furthermore, an L-shaped slot in the radiator and two L-shaped slots in the ground plane are used to restrict electromagnetic interference (EMI) at WiMAX and WLAN bands, respectively, without affecting the electrical performance of the UWB antenna. Effects of the key parameters on the frequency range of the notched bands are also investigated. The proposed design shows a measured impedance bandwidth of 12.5 GHz (2.7–14.4 GHz), with the two band-notched bands of 3.0–3.9 and 4.9–5.8 GHz. The antenna is suitable to be integrated within the portable UWB devices without EMI interference at WiMAX and WLAN bands.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gautam, A.K.; Yadav, S.; Kanaujia, B.Kr.: A CPW-fed compact UWB microstrip antenna. IEEE Antennas Wireless Propag. Lett., 12 (2013), 150154.CrossRefGoogle Scholar
[2] Radiom, S.; Aliakbarian, H.; Vandenbosch, G.A.E.; Gielen, G.G.E.: An effective technique for symmetric planar monopole antenna miniaturization. IEEE Trans. Antennas Propag., 57 (2009), 29892996.CrossRefGoogle Scholar
[3] Gautam, A.K.; Chandel, R.; Kanaujia, B.Kr: A CPW-fed hexagonal-shape monopole-like UWB antenna. Microw. Opt. Technol. Lett., 55 (2013), 25822587.CrossRefGoogle Scholar
[4] Zhang, Y.; Hong, W.; Yu, C.; Kuai, Z-Q.; Don, Y-D.; Zhou, J-Y.: Planar ultra wideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. IEEE Trans. Antenna Propag., 56 (2008), 30633068.CrossRefGoogle Scholar
[5] Ma, T.G.; Wu, S.J.: Ultra wideband band-notched folded strip monopole antenna. IEEE Trans. Antenna Propag., 55 (2007), 24732479.CrossRefGoogle Scholar
[6] Gautam, A.K.; Indu, ; Kanaujia, B.Kr.: Dual band-notched rectangular monopole antenna for ultra wideband applications. Microw. Opt. Technol. Lett., 55 (2013), 30293033.Google Scholar
[7] Shagar, A.C.; Wahidabanu, R.S.D.: Design and analysis of slot antenna with band notch function. Int. J. RF Microw. Comp. Aid. Eng., 22 (2012), 402410.CrossRefGoogle Scholar
[8] Mandal, T.; Das, S.: Design of a microstrip fed printed monopole antenna for Bluetooth and UWB applications with WLAN notch band characteristics. Int. J. RF Microw. Comp. Aid. Eng., 25 (2014), 6674.CrossRefGoogle Scholar
[9] Lee, D.-H.; Yang, H.-Y.; Cho, Y.-K.: Tapered slot antenna with band-notched function for ultra wideband radios. IEEE Antennas Wireless Propag. Lett., 11 (2012), 682684.Google Scholar
[10] Gao, P.; He, S.; Wei, X.; Xu, Z.; Wang, N.; Zheng, Y.: Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics. IEEE Antennas Wireless Propag. Lett., 13 (2013), 376379.CrossRefGoogle Scholar
[11] Li, W.T.; Hei, Y.Q.; Feng, W.; Shi, X.W.: Planar antenna for 3G/Bluetooth/WiMAX and UWB applications with dual band-notched characteristics. IEEE Antennas Wireless Propag. Lett., 11 (2012), 6164.Google Scholar
[12] Gao, S.; Zhu, F.; Ho, A.T.S.; Abd-Alhameed, R.A.; See, C.H.; Li, J.; Xu, J.: Miniaturized tapered slot antenna with signal rejection in 5–6-GHz band using a balun. IEEE Antennas Wireless Propag. Lett., 11 (2012), 507510.Google Scholar
[13] Li, B.; Hong, J.; Wang, B.: Switched band-notched UWB/dual-band WLAN slot antenna with inverted S-shaped slots. IEEE Antennas Wireless Propag. Lett., 11 (2012), 572575.Google Scholar
[14] Sung, Y: UWB Monopole antenna with two notched bands based on the folded stepped impedance resonator. IEEE Antennas Wireless Propag. Lett., 11 (2012), 500502.CrossRefGoogle Scholar
[15] Li, J.-F.; Chu, Q.-X.; Li, Z.-H.; Xia, X.-X.: Compact dual band-notched UWB MIMO antenna with high isolation. IEEE Trans. Antennas Propag., 61 (2013), 47594766.CrossRefGoogle Scholar
[16] Li, T.; Zhai, H.; Li, L.; Liang, C.; Han, Y.: Compact UWB antenna with tunable band-notched characteristic based on microstrip open-loop resonator. IEEE Antennas Wireless Propag. Lett., 11 (2012), 15841587.CrossRefGoogle Scholar
[17] Li, T.; Zhai, H.; Li, L.; Liang, C.; Han, Y.: Compact printed wide-slot UWB antenna with 3.5/5.5 GHz dual band-notched characteristics. IEEE Antennas Wireless Propag. Lett., 12 (2013), 983986.Google Scholar
[18]Computer Simulation Technology Microwave Studio (CST MWS).Google Scholar
[19] Quintero, G.; Zurcher, J.-F.; Skrivervik, A.K.: System fidelity factor: a new method for comparing UWB antenna. IEEE Trans. Antennas Propag., 59 (2011), 25022512.Google Scholar