Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T14:00:41.510Z Has data issue: false hasContentIssue false

Design and parametric analysis of a planar array antenna for circular polarization

Published online by Cambridge University Press:  18 March 2015

Muhammad Asad Rahman*
Affiliation:
Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh. Phone: +880 1715 612240
Quazi Delwar Hossain
Affiliation:
Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh. Phone: +880 1715 612240
Md. Azad Hossain
Affiliation:
Department of Electronic and Telecommunication Engineering, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh
Eisuke Nishiyama
Affiliation:
Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
Ichihiko Toyoda
Affiliation:
Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
*
Corresponding author: M. A. Rahman Email: [email protected]

Abstract

A new circularly polarized planar array antenna using linearly polarized microstrip patches is designed and optimized for X-band wireless communication applications. Four square patch elements with feed network are used to design the circularly polarized array antenna. The feed network consists of microstrip lines on the obverse side of the dielectric substrate and slot line on the reverse side of the substrate. Both-sided MIC technology is successfully employed to apply its inherent advantages in the design process of the array structure. The unequal feed line is used to create 90° phase difference between the linearly polarized patches. Therefore, the circular polarization is realized by the combination of linearly polarized patches and unequal feed line. Characteristics of the proposed array are investigated by using two electromagnetic (EM) simulators: advanced design system and EMPro. The −10 dB impedance bandwidth of the antenna is around 5%. The 3 dB axial ratio bandwidth of 1.48% is obtained. The design of the proposed antenna along with parametric study is presented and discussed.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Garg, R.; Bhartia, P.; Bhal, I.; Ittipiboon, A.: Microstrip Antenna Design Handbook, Artech House, London, 2001.Google Scholar
[2] Davies, K.; Smith, E.K.: Ionospheric effects on satellite land mobile systems. IEEE Trans. Antennas Propag. Mag., 44 (6) (2002), 2431.Google Scholar
[3] Garcia, J.; Arriola, A.; Casado, F.; Chen, X.; Sancho, J.I.; Valderas, D.: Coverage and read range comparison of linearly and circularly polarized radio frequency identification ultra-high frequency tag antennas. IET Microw., Antennas Propag., 6 (9) (2012), 10701078.Google Scholar
[4] Huang, J.: A technique for an array to generate circular polarization with linearly polarized elements. IEEE Trans. Antennas Propag., 34 (9) (1986), 11131124.Google Scholar
[5] Iwasaki, H.; Nakajima, T.; Suzuki, Y.: Gain improvement of circularly polarized array antenna using linearly polarized elements. IEEE Trans. Antennas Propag., 43 (6) (1995), 604608.Google Scholar
[6] Rahman, M.A.; Hossain, Q.D.; Hossain, M.A.; Chowdhury, P.: Design of a circular polarization array antenna with dual-orthogonal feed circuit, in 3rd Int. Conf. on Informatics, Electronics & Vision (ICIEV2014), Dhaka, 2014.CrossRefGoogle Scholar
[7] Shahabadi, M.; Busuioc, D.; Borji, A.; Safavi-Naeini, S.: Low-cost, high-efficiency quasi-planar array of waveguide-fed circularly polarized microstrip antennas. IEEE Trans. Antenna Propag., 53 (2005), 20362043.Google Scholar
[8] Jazi, M.N.; Azarmanesh, M.N.: Design and implementation of circularly polarised microstrip antenna array using a new serial feed sequentially rotated technique. IEE Proc.-Microw. Antennas Propag., 153 (2) (2006), 133140.Google Scholar
[9] Chen, A.; Zhang, Y.; Chen, Z.; Cao, S.: A Ka-band high-gain circularly polarized microstrip array. IEEE Antennas Wireless Propag. Lett., 9 (2010), 11151118.Google Scholar
[10] Hu, Y.J.; Ding, W.P.; Cao, W.Q.: Broadband circularly polarized microstrip antenna array using sequentially rotated technique. IEEE Antennas Wireless Propag. Lett., 10 (2011), 13581361.Google Scholar
[11] Evans, H.; Sambell, A.: Wideband 2 × 2 sequentially rotated patch antenna array with a series feed. Microwave Opt. Technol. Lett., 40 (4) (2004), 292294.Google Scholar
[12] Gautam, A.K.; Benjwal, P.; Kanaujia, B.K.: A compact square microstrip antenna for circular polarization. Microwave Opt. Technol. Lett., 54 (4) (2012), 897900.Google Scholar
[13] Qian, K.; Tang, X.H.: Compact LTCC dual-band circularly polarized perturbed hexagonal microstrip antenna. IEEE Trans. Antennas Propag., 10 (2011), 12121215.Google Scholar
[14] Iwasaki, H.: A circularly polarized small-size microstrip antenna with a cross slot. IEEE Trans. Antennas Propag., 44 (1996), 13991401.Google Scholar
[15] Lu, J.H.; Tang, C.L.; Wong, K.L.: Single-feed slotted equilateral-triangular microstrip antenna for circular polarization. IEEE Trans. Antennas Propag., 47 (1999), 11741178.Google Scholar
[16] Nasimuddin; Chen, Z.N.; Qing, X.: A compact circularly polarized cross-shaped slotted microstrip antenna. IEEE Trans. Antennas Propag., 20 (3) (2012), 15841588.Google Scholar
[17] Nasimuddin; Chen, Z.N.; Qing, X.: Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications. IEEE Trans. Antennas Propag., 58 (12) (2010), 38213828.Google Scholar
[18] Nasimuddin; Qing, X.; Chen, Z.N.: Compact asymmetric-slit microstrip antennas for circular polarization. IEEE Trans. Antennas Propag., 59 (1) (2011), 285288.Google Scholar
[19] Khidre, A.; Lee, K.F.; Yang, F.; Elsherbeni, A.Z.: Circular polarization reconfigurable wideband E-shaped patch antenna for wireless applications. IEEE Trans. Antennas Propag., 61 (2) (2013), 960964.Google Scholar
[20] Lin, C.; Zhang, F.S.; Jiao, Y.C.; Zhang, F.; Xue, X.: A three-fed microstrip antenna for wideband circular polarization. IEEE Antennas Wireless Propag. Lett., 9 (2010), 359362.Google Scholar
[21] Wong, K.L.; Lin, Y.F.: Circularly polarized microstrip antenna with a tuning stub. Electron. Lett., 34 (1998), 831832.Google Scholar
[22] Wong, K.L.; Chen, M.H.: Slot-coupled small circularly polarized microstrip antenna with modified cross-slot and bent tuning-stub. Electron. Lett., 34 (1998), 15421543.Google Scholar
[23] Chen, W.S.; Wu, C.K.; Wong, K.L.: Square-ring microstrip antenna with a cross strip for compact circular polarization operation. IEEE Trans. Antennas Propag., 47 (1999), 15661568.Google Scholar
[24] Lu, J.H.; Wong, K.L.: Single-feed circularly-polarized equilateral-triangular microstrip antenna with a tuning stub. IEEE Trans. Antennas Propag., 48 (2000), 18691872.Google Scholar
[25] Huang, J.: A Ka-band circularly polarized high-gain microstrip array antenna. IEEE Trans. Antennas Propag., 43 (1) (1995), 113116.Google Scholar
[26] Kodama, K.; Nishiyama, E.; Aikawa, M.: Slot array antenna using Both-sided MIC technology. IEEE Int. Symp. on Antennas and Propagation, 3 (2004), 27152718.Google Scholar
[27] Aikawa, M.; Ogawa, H.: Double-sided MIC's and their applications. IEEE Trans. Microw. Theory Tech., 37 (2) (1989), 406413.Google Scholar
[28] Egashira, K.; Nishiyama, E.; Aikawa, M.: Planar array antenna using both-sided MIC's feeded circuits. Electron. Commun. Jpn., 87 (7) (2004), 2330.Google Scholar
[29] Wong, K.L.: Compact and Broadband Microstrip Antennas, John Wiley & Sons, Inc., New York, 2002.Google Scholar