Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T19:57:13.616Z Has data issue: false hasContentIssue false

Design and analysis of a compact quad band loaded monopole antenna with independent resonators

Published online by Cambridge University Press:  14 January 2018

Mahmoud A. Abdalla*
Affiliation:
Electromagnetic Waves Group, Department of Electronic Engineering, Military Technical College, Giza, Egypt
Zhirun Hu
Affiliation:
Microwave and Communication Systems Group, School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
*
Corresponding author: M. A. Abdalla Email: [email protected]

Abstract

A quad band antenna with good gain and omni-directional pattern is proposed in this paper. The antenna design is based on loading a conventional monopole antenna by three different resonators. The resonators are inspired from the shunt branch of composite right-/left-handed cell. The resonators have a simple structure and compact size. The control of the frequency bands can be achieved arbitrarily and hence the suggested design methodology can be generalized to any required bands. The fabricated antenna prototype is operating at 2.6, 3.35, 5.15, and 6.1 GHz with bandwidth wider than 100 MHz for each band. The antenna's operating principle and design procedures with the aid of electromagnetic full wave simulation are presented. Finally, the experimental results exhibit good agreement with the simulated ones which confirm the proposed designed methodology. The proposed monopole antenna has a patch size of 13.5 mm × 6.5 mm and the whole antenna size (including the feed line) is 35 mm × 32 mm. Compared to conventional single-band microstrip patch radiator size, the proposed quad band radiator has the size of 9, 15, 37.5, and 72.5% at relevant frequency bands.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Caloz, C.; TItoh, T.: Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons, New Jersey, 2005.Google Scholar
[2]Eleftheriades, G.V.; Balmain, K.G.: Negative Refractive Metamaterials. John Wiey & Sons, New Jersey, 2005.Google Scholar
[3]Eleftheriades, G.V.: Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials. IEEE Antennas Propag. Mag., 49 (2) (2007), 3451.Google Scholar
[4]Caloz, C.: Metamaterial dispersion engineering concepts and applications. Proc. IEEE, 99 (10) (2011), 17111719.Google Scholar
[5]Dong, Y.; Itoh, T.: Promising future of metamaterials. IEEE Microw. Mag., 13 (2) (2012), 3956.CrossRefGoogle Scholar
[6]Lee, C-J.; Huang, W.; Gummalla, A.; Achour, M.: Small antennas based on CRLH structures: concept, design, and applications. IEEE Antennas Propag. Mag., 53 (2) (2011), 1025.Google Scholar
[7]Ziolkowski, R.W.; Jin, P.; Lin, C.: Metamaterial-inspired engineering of antennas. IEEE Proc., 99 (10) (2011), 17201731.Google Scholar
[8]Dong, Y.; Itoh, T.: Metamaterial-based antennas. IEEE Proc., 100 (7) (2012), 22712285.Google Scholar
[9]Wong, K.L.: Compact and Broadband Microstrip Antennas. John Wiley & Sons, Inc., New York, 2002.Google Scholar
[10]Park, Y.K.; Kang, D.; Sung, Y.: Compact folded triband monopole antenna for USB dongle applications. IEEE Antennas Wireless Propag. Lett., 11 (2012), 228231.Google Scholar
[11]Liu, W-C.; Wu, C-M.; Dai, Y.: Design of triple-frequency microstrip-fed monopole antenna using defected ground structure. IEEE Trans. Antennas Propag., 59 (7) (2011), 24572463.Google Scholar
[12]Chang, T-H.; Kiang, J-F.: Compact multi-band H-shaped slot antenna. IEEE Trans. Antennas Propag., 61 (8) (2013), 43454349.Google Scholar
[13]Moosazadeh, M.; Kharkovsky, S.: Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications. IEEE Antennas Wireless Propag. Lett., 13, (2014), 388391.Google Scholar
[14]Ding, D.; Wang, G.: Modified multiobjective evolutionary algorithm based on decomposition for antenna design. IEEE Trans. Antennas Propag., 61 (10) (2013), 53015307.Google Scholar
[15]Singh, H.S.; Agarwal, M.; Pandey, G.K.; Meshram, M.K.: A quad-band compact diversity antenna for GPS L1/Wi-Fi/LTE2500/WiMAX/HIPERLAN1 applications. IEEE Antennas Wireless Propag. Lett., 13 (2014), 249252.Google Scholar
[16]Liu, H.; Wen, P.; Zhu, S.; Ren, B.; Guan, X.; Yu, H.: Quad-band CPW-fed monopole antenna based on flexible pentangle-loop radiator. IEEE Antennas Wireless Propag. Lett., 14 (2015), 13731376.Google Scholar
[17]Boukarkar, A.; Lin, X.Q.; Jiang, Y.; Yu, Y.Q.: Miniaturized single-feed multiband patch antennas. IEEE Trans. Antennas Propag, 65 (2) (2017), 850854.Google Scholar
[18]Piao, H.; Jin, Y.; Tak, J.; Choi, J.: Compact quad-band slot antenna for GPS L1, WiMAX, and WLAN applications, in 2016 IEEE Int. Symp. on, Antennas and Propagation (ISAP), 2016, 808809.Google Scholar
[19]Lin, C-P.; Chang, C-H.; Jou, C.F.: Compact quad band monopole antenna. Microw. Opt. Technol. Lett., 53 (6) (2011), 12721276.Google Scholar
[20]Rajagopal, C.; Suseela, S.B.; Noorullakhan, N.; Sankararajan, R.: Compact modified ‘T’ slot circular patch quad band antenna for MIMO applications. Int. J. Microw. Wireless Technol., 9 (4) (2017), 865873.Google Scholar
[21]Ren, W.; Hu, S-W.; Jiang, C.: An ACS-fed F-shaped monopole antenna for GPS/WLAN/WiMAX applications. Int. J. Microw. Wireless Technol., 9 (5) (2017), 11231129.Google Scholar
[22]Dong, Y.; Itoh, T.: Metamaterial-based antennas. Proc. IEEE, 100 (7) (2012), 22712285.Google Scholar
[23]Lee, C-J.; Huang, W.; Gummalla, A.; Achour, M.: Small antennas based on CRLH structures: Concept, design, and applications. IEEE Antennas Propag. Mag., 53 (2) (2011), 1025.Google Scholar
[24]Abdalla, M.; Karimian, S.; Hu, Z.: Dual band spurious-free SIR metamaterial antenna, in 2014 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Memphis, USA, 2014, 10051006.Google Scholar
[25]Abdalla, M.A.; Wahba, W.W.; Allam, A.M.: Asymmetric dual-band integrated compact CRLH SIW array antenna. J. Electromagn. Waves Appl., 31 (3) (2017), 284296.CrossRefGoogle Scholar
[26]Abdalla, M.; Sadek, F.H.: Compact triple-band left-handed antenna for GSM/WiMAX applications, in 2015 9th Int. Congress on Advanced Electromagnetic Material in Microwave and Optics, UK, September 2015, 295297.CrossRefGoogle Scholar
[27]Abdalla, M.A.; Abdelnaser, M.I.: A compact dual band D-CRLH antenna with radiation pattern directional characteristics, in 2016 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Portorreco USA, 2016, 277278.Google Scholar
[28]Abdalla, M.; Fouad, A.: Compact triple band D-CRLH metamaterial antenna, in 2015 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Vancouver, Canada, July 2015, 11901191.Google Scholar
[29]Zhu, J.; Eleftheriades, G.V.: Dual-band metamaterial-inspired small monopole antenna for WiFi applications. Electron. Lett., 45 (22) (2009), 11041106.Google Scholar
[30]Ibrahim, A.A.; Safwat, A.M.E.: Microstrip-fed monopole antennas loaded with CRLH unit cells. IEEE Trans. Antennas Propag., 60 (9) (2012), 40274036.Google Scholar
[31]Abdalla, M.; Abo El-Dahab, M.; Ghouz, M.: Dual/triple band printed dipole antenna loaded with CRLH cells, in 2014 IEEE AP-S Int. Antenna and Propagation Symp. Digest, Memphis, USA, 2014, 10071008.Google Scholar
[32]Elsheakh, D.M.; Safwat, A.M.E.: Slow-wave quad-band printed inverted-F antenna (IFA). IEEE Trans. Antennas Propag, 62 (8) (2014), 43964401.Google Scholar
[33]Nandi, S.; Mohan, A.: CRLH unit cell loaded quad-band monopole antenna. Microw. Opt. Technol. Lett, 58 (3) (2016), 653658.CrossRefGoogle Scholar
[34]Abdalla, M.A.; Hu, Z.: A compact dual band meta-material antenna for wireless applications, in 2012 Loughborough Antennas & Propagation Conf., Loughborough, UK, 2012, 14.CrossRefGoogle Scholar
[35]Abdalla, M.; Fouad, M.; Ahmed, A.; Hu, Z.: A new compact microstrip triple band antenna using half mode CRLH transmission line, in 2013 IEEE AP-S Int. Antenna and Propagation Symp. Digest, 2013, 634635.Google Scholar
[36]Abdalla, M.A.; Abdelnaby, U.; Mitkees, A.A.: Compact and triple band meta-material antenna for all WiMAX applications, in 2012 Int. Symp. on Antennas and Propagation (ISAP), 2012, 11761179.Google Scholar
[37]Abdalla, M.A.; Hu, Z.; Muvianto, C.: Analysis and design of triple band metamaterial simplified CRLH cells loaded monopole antenna, in Int. J. Microw. Wireless Technol., June 2016, 111.CrossRefGoogle Scholar