Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T10:26:12.412Z Has data issue: false hasContentIssue false

Compact ultra-wideband pattern diversity antenna for body-centric communications

Published online by Cambridge University Press:  31 March 2022

Malathi Kanagasabai
Affiliation:
Department of Electronics and Communication Engineering, College of Engineering, Guindy, Anna University, Chennai, 600025, India
Padmathilagam Sambandam*
Affiliation:
Department of Electronics and Communication Engineering, College of Engineering, Guindy, Anna University, Chennai, 600025, India
Mohammed Gulam Nabi Alsath
Affiliation:
Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
*
Author for correspondence: Padmathilagam Sambandam, E-mail: [email protected]

Abstract

This paper presents a pattern diversity UWB antenna for Wireless Body Area Network (WBAN) communications. Pattern diversity antenna comprises two antenna elements with directional and omnidirectional patterns suitable for off-body and on-body communications respectively. Several broad-banding techniques such as Co-Planar waveguide, parasitic patches, and cavity resonant techniques are incorporated in microstrip antenna to achieve an ultra-wideband of 7.5 GHz (3.1 to 10.6 GHz) with a directional pattern. Monopole radiator topology is utilized to achieve a UWB frequency range of 2.6–10.6 GHz with an omnidirectional pattern. Pattern diversity is achieved using an orthogonal arrangement of the antenna elements in a compact size of 40 mm × 34 mm, maintaining the isolation >20 dB between the antennas. Gain varies from 2.2 to 4.6 dBi and 2.5 to 7.5 dBi for omnidirectional and directional antenna respectively. The simulated radiation efficiency for the directional antenna and the omnidirectional antenna are 74–86% and 52–66.5% respectively. The proposed design provides a good diversity performance in the entire UWB bandwidth with ECC<0.1 and a diversity gain of approximately 10 dB. SAR impact evaluated under various conditions is found to be <1.6 W/Kg for 1 gram of tissue.

Type
Biomedical Applications
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sun, Y, Cheung, SW and Yuk, TI (2014) Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications. IET Microwaves, Antennas & Propagation 8, 13631375.CrossRefGoogle Scholar
Kang, C, Wu, S and Tarng, J (2012) A novel folded UWB antenna for wireless body area network. IEEE Transactions on Antennas and Propagation 60, 11391142.CrossRefGoogle Scholar
Zheng, Y, Zhang, K, Chen, J and Yan, S (2021) Compact monopole antenna for wireless body area network, wireless local area network, and ultrawideband applications. International Journal of RF and Microwave Computer-Aided Engineering 31, e22546.CrossRefGoogle Scholar
Prudhvi Nadh, B, Madhav, BTP, Siva Kumar, M, Venkateswara Rao, M and Anilkumar, T (2019) Circular ring structured ultra-wideband antenna for wearable applications. International Journal of RF and Microwave Computer-Aided Engineering 29, e21580.CrossRefGoogle Scholar
Bahrami, H, Mirbozorgi, SA, Ameli, R, Rusch, LA and Gosselin, B (2016) Flexible, polarization-diverse UWB antennas for implantable neural recording systems. IEEE Transactions on Biomedical Circuits and Systems 10, 3848.CrossRefGoogle ScholarPubMed
Shaker, G, Safavi-Naeini, S, Sangary, N and Tentzeris, MM (2011) Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates. IEEE Antennas and Wireless Propagation Letters 10, 111114.CrossRefGoogle Scholar
Koohestani, M, Zürcher, J, Moreira, AA and Skrivervik, AK (2014) A novel, low-profile, vertically-polarized UWB antenna for WBAN. IEEE Transactions on Antennas and Propagation 62, 18881894.CrossRefGoogle Scholar
Hammache, B, Messai, A, Messaoudene, I and Denidni, TA (2020) Compact ultra-wideband slot antenna with three notched-band characteristics. International Journal of RF and Microwave Computer-Aided Engineering 30, e22146.CrossRefGoogle Scholar
Yan, S, Soh, PJ and Vandenbosch, GAE (2018) Wearable ultrawideband technology – A review of ultrawideband antennas, propagation channels, and applications in wireless body area networks. IEEE Access 6, 4217742185.CrossRefGoogle Scholar
Khaleel, HR (2014) “design and fabrication of compact inkjet printed antennas for integration within flexible and wearable electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology 4, 17221728.CrossRefGoogle Scholar
Jeong, W, Tak, J and Choi, J (2015) A low-profile IR-UWB antenna with ring patch for WBAN applications. IEEE Antennas and Wireless Propagation Letters 14, 14471450.CrossRefGoogle Scholar
Yang, D, Hu, J and Liu, S (2018) A Low profile UWB antenna for WBAN applications. IEEE Access 6, 2521425219.CrossRefGoogle Scholar
Doddipalli, S and Kothari, A (2019) Compact UWB antenna with integrated triple notch bands for WBAN applications. IEEE Access 7, 183190.CrossRefGoogle Scholar
Balderas, LI, Reyna, A, Panduro, MA, Del Rio, C and Gutiérrez, AR (2019) Low-profile conformal UWB antenna for UAV applications. IEEE Access 7, 127486127494.CrossRefGoogle Scholar
Klemm, M, Kovcs, IZ, Pedersen, GF and Troster, G (Dec. 2005) Novel small-size directional antenna for UWB WBAN/WPAN applications. IEEE Transactions on Antennas and Propagation 53, 38843896.CrossRefGoogle Scholar
Simorangkir, RBVB, Kiourti, A and Esselle, KP (2018) UWB Wearable antenna with a full ground plane based on PDMS-embedded conductive fabric. IEEE Antennas and Wireless Propagation Letters 17, 493496.CrossRefGoogle Scholar
Padmathilagam, S, Malathi, K, Shini, R, Rajesh, N, Gulam Nabi Alsath, M, Shanmathi, S, Sindhadevi, M and Sandeep Kumar, P (2020) Compact monopole antenna backed with fork-slotted EBG for wearable applications. IEEE Antennas and Wireless Propagation Letters 19, 228232.Google Scholar
Joo, E, Kwon, K and Choi, J (2014) Design of a folded UWB MIMO antenna for an on-body application. Microwave and Optical Technology Letters 56, 23512357.CrossRefGoogle Scholar
Toktas, A and Akdagli, A (2015) Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications. IET Microwaves, Antennas & Propagation 9, 822829.CrossRefGoogle Scholar
Chandel, R, Gautam, AK and Rambabu, K (2018) Design and packaging of an eye-shaped multiple-input–multiple-output antenna with high isolation for wireless UWB applications. IEEE Transactions on Components, Packaging and Manufacturing Technology 8, 635642.CrossRefGoogle Scholar
Addepalli, T and Anitha, VR (2020) A very compact and closely spaced circular shaped UWB MIMO antenna with improved isolation. AEU – International Journal of Electronics and Communications 114, 153016.CrossRefGoogle Scholar
Dabas, T, Gangwar, D, Kanaujia, B and Gautam, A (2018) Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands. AEU - International Journal of Electronics and Communications 93, 3238.CrossRefGoogle Scholar
Agarwal, M, Dhanoa, J and Khandelwal, M (2021) Two-port hexagon shaped MIMO microstrip antenna for UWB applications integrated with double stop bands for WiMax and WLAN. AEU – International Journal of Electronics and Communications 138, 153885.CrossRefGoogle Scholar
Mathur, R and Dwari, S (2018) Compact CPW-Fed ultrawideband MIMO antenna using hexagonal ring monopole antenna elements. AEU – International Journal of Electronics and Communications 93, 16.CrossRefGoogle Scholar
Bharadwaj, R, Swaisaenyakorn, S, Parini, C, Batchelor, JC, Koul, SK and Alomainy, A (2020) UWB Channel characterization for compact L-shape configurations for body-centric positioning applications. IEEE Antennas and Wireless Propagation Letters 19, 2933.CrossRefGoogle Scholar
Felício, JM, Costa, JR and Fernandes, CA (2018) Dual-band skin-adhesive repeater antenna for continuous body signals monitoring. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2, 2532.CrossRefGoogle Scholar
Wang, S, Ji, Y, Gibbins, D and Yin, X (2017) Impact of dynamic wideband MIMO body channel characteristics on healthcare rehabilitation of walking. IEEE Antennas and Wireless Propagation Letters 16, 505508.CrossRefGoogle Scholar
Kumar Biswas, A and Chakraborty, U (2019) Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications. IET Microwaves, Antennas & Propagation 13, 498504.CrossRefGoogle Scholar
Woo, S, Baek, J, Park, H, Kim, D and Choi, J (2013) Design of a compact UWB diversity antenna for WBAN wrist-watch applications, Proceedings of the International Symposium on Antennas & Propagation, Nanjing, 2013, pp. 13041306.Google Scholar
Veeraselvam, A, Mohammed, GNA, Savarimuthu, K, Marimuthu, M and Balasubramanian, B (2020) Polarization diversity enabled flexible directional UWB monopole antenna for WBAN communications. International Journal of RF and Microwave Computer-Aided Engineering 30, e22311.CrossRefGoogle Scholar
Sambandam, P, Kanagasabai, M, Natarajan, R, Alsath, MGN and Palaniswamy, S (2020) Miniaturized button-like WBAN antenna for off-body communication. IEEE Transactions on Antennas and Propagation 68, 52285235.CrossRefGoogle Scholar
Gulam Nabi Alsath, M and Kanagasabai, M (2016) Ultra-wideband grid array antenna for automotive radar sensors. IET Microwaves, Antennas & Propagation 10, 16131617.CrossRefGoogle Scholar
Subbaraj, S, Ramalingam, VS, Kanagasabai, M, Sundarsingh, EF, Selvam, YP and Kingsley, S (2016) Electromagnetic nondestructive material characterization of dielectrics using EBG based planar transmission line sensor. IEEE Sensors Journal 16, 70817087.CrossRefGoogle Scholar