No CrossRef data available.
Co-channel interference analysis at faulty K band waveguide joints
Published online by Cambridge University Press: 30 March 2022
Abstract
Channel interference is a significant issue for many applications such as satellite communication, mobile communication, and RADAR communication. This paper presents co-channel interference analysis at faulty K band waveguide joints using the multi-cavity modeling technique. Numerical data obtained from multi-cavity modeling technique analysis has been compared with CST microwave studio simulated data and verified with measured data.
- Type
- Passive Components and Circuits
- Information
- International Journal of Microwave and Wireless Technologies , Volume 15 , Issue 2 , March 2023 , pp. 198 - 203
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association
References
Lafata, P (2011) FAR-END crosstalk modeling based on capacitive and inductive unbalance between pairs in a cable. Information and Communication Technologies and Services 9, 14–20.Google Scholar
Nasab, MH and Cheldevi, A (2006) Coupling model for the two orthogonal microstrip lines in two layer PCB board (quasi – TEM approach). Progress in Electromagnetics Research 60, 153–163.CrossRefGoogle Scholar
Balasubramanian, R, Miyazaki, YY and Kondo, M (2007) Investigation of crosstalk effects due to optical fiber nonlinearities in WDM CATV network. Progress In Electromagnetics Research Online 3, 940–942.Google Scholar
Panda, DK and Chakraborty, A (2008) Analysis of co-channel interference at waveguide joints using multiple cavity modeling technique. Progress in Electromagnetics Research Letters 4, 91–98.CrossRefGoogle Scholar
Panda, DK and Chakraborty, A (2011) Cross talk analysis at faulty multi-channel waveguide joints. International Journal of Microwave and Optical Technology 6, 51–56.Google Scholar
Sharma, N and Panda, DK (2021) Crosstalk analysis of E-plane Ku band waveguide joints. Progress in Electromagnetics Research C 151, 175–185.CrossRefGoogle Scholar
Vengadarajan, A (1999) Multiple Cavity Modelling Technique for Solving Aperture Coupled Waveguide Junctions (Ph.D. dissertation). Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur.Google Scholar
Das, S, Chakraborty, A and Chakrabarty, A (2006) Analysis of Folded E-plane Tee Junction using Multiple Cavity Modeling Technique. ICECE, Dhaka, Bangladesh.CrossRefGoogle Scholar
Panda, DK and Chakraborty, A (2008) Analysis of Folded H-plane Tee Junction Using Multiple Cavity Modeling Technique. Proceedings of International conferences on Industrial and Information system, IIT Kharagpur.CrossRefGoogle Scholar
Das, S and Chakraborty, A (2006) A novel modeling technique to solve a class of rectangular waveguide based circuit and radiators. Progress in Electromagnetic Research 61, 231–252.CrossRefGoogle Scholar
Das, S, Chakraborty, A and Chakraborty, A (2007) Analysis of Multiport Waveguide Power Divider/Combiner for Phased Array Application. NCC 2007, Kanpur, India.Google Scholar
Panda, DK (2010) Analysis and Design Of Longitudinal Rectangular Waveguide Power Dividers/Combiners using Multiple Cavity Modeling Technique (Ph.D.Dissertation). Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur.Google Scholar
Panda, DK and Chakraborty, A (2015) Analysis and design of longitudinal power divider/combiner for higher frequencies. International Journal of Microwave and Optical Technology 10, 240–244.Google Scholar
Harrington, RF (1961) Time Harmonic Electromagnetic Fields. New York: McGraw-Hill Book Company.Google Scholar
Harrington, RF (1968) Field Computation by Moment Methods. Malabar, FL: Roger E.Krieger Publishing Company.Google Scholar