Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T13:54:14.506Z Has data issue: false hasContentIssue false

Behavioral modeling and linearization of a millimeter-wave power amplifier

Published online by Cambridge University Press:  12 May 2009

Ilan Melczarsky*
Affiliation:
Dipartimento di Ingegneria Elettronica (DEIS), University of Bologna, Viale Risorgimento 2, 40136 Bologna (BO), Italy. Phone: +39 0512093847; Fax: +39 0512093847; Emails: [email protected], [email protected]
Pere L. Gilabert
Affiliation:
Department of Signal Theory and Communications, Polytechnic University of Catalonia (UPC), Av. Canal Olímpic s/n, 08860 Castelldefels, Barcelona, Spain. Phone: +34 934137000; Fax: +34 934137032; Emails: [email protected], [email protected]
Valeria Di Giacomo
Affiliation:
Dipartimento di Ingegneria, Università di Ferrara, Via Saragat, 1, 44100 Ferrara (Fe), Italy. Phone: +39 05322093494; Fax: +39 0532974870; Email: [email protected]
Eduard Bertran
Affiliation:
Department of Signal Theory and Communications, Polytechnic University of Catalonia (UPC), Av. Canal Olímpic s/n, 08860 Castelldefels, Barcelona, Spain. Phone: +34 934137000; Fax: +34 934137032; Emails: [email protected], [email protected]
Fabio Filicori
Affiliation:
Dipartimento di Ingegneria, Università di Ferrara, Via Saragat, 1, 44100 Ferrara (Fe), Italy. Phone: +39 05322093494; Fax: +39 0532974870; Email: [email protected]
*
Corresponding author: I. Melczarsky Email: [email protected]

Abstract

The use of digital predistortion for linearizing a millimeter-wave power amplifier (PA) is investigated. A PA operating at 38 GHz is designed using an accurate non-quasi-static transistor model, taking into account both short- and long-term memory effects. A realistic test signal is then used for the identification of a nonlinear auto-regressive moving average (NARMA) behavioral model of the PA. The NARMA-based digital predistorter is then derived and formulated in terms of basic predistortion cells, especially suitable for efficient implementation in an FPGA. The performance of the predistortion solution is preliminarily assessed by means of computer simulations.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Liu, T.; Boumaiza, S.; Ghannouchi, F.M.: Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters. IEEE Trans. Microwave Theory Tech., 54 (2006), 13401349.Google Scholar
[2]Zhi-yong, H.; Jian-hua, G.; Shu-jian, G.; Gang, W.: An improved look-up table predistortion technique for HPA with memory effects in OFDM systems. IEEE Trans. Broadcasting, 52 (2006), 8791.CrossRefGoogle Scholar
[3]Melczarsky, I.; Gilabert, P.L.; Montoro, G.; Bertran, E.; Di Giacomo, V.; Filicori, F.: Behavioral modeling and digital predistortion for the linearization of a mm-wave power amplifier. TARGET Days 07 Rome, December 07, 4146.Google Scholar
[4]Kenington, P.B.: High-Linearity RF Amplifier Design. Artech House Publishers, Boston, 2000.Google Scholar
[5]Santarelli, A. et al. : A simple non-quasi-static non-linear model of electron devices, in GAAS Symp. Paris, October 05, 305308.Google Scholar
[6]Filicori, F.; Vannini, G.; Santarelli, A.; Mediavilla, A.; Tazon, A.; Newport, Y.: Empirical modeling of low-frequency dispersive effects due to traps and thermal phenomena in III-V FETs. IEEE Trans. Microwave Theory Tech., 43 (1995), 29722981.CrossRefGoogle Scholar
[7]Mirri, D.; Iuculano, G.; Filicori, F.; Pasini, G.; Vannini, G.; Pellegrini, G.: A modified Volterra series approach for nonlinear dynamic system modeling. IEEE Trans. Circuits Syst. I, 49 (2002), 11181128.CrossRefGoogle Scholar
[8]Vuolevi, J.: Distortion in RF Power Amplifiers. Artech House Publishers, Boston, 2003.Google Scholar
[9]Pedro, J.C.; Maas, S.A.: A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches. IEEE Trans. Microwave Theory Tech., 53 (2005), 11501163.CrossRefGoogle Scholar
[10]Gilabert, P.L.; Montoro, G.; Cesari, A.: A recursive digital predistorter for linearizing RF power amplifiers with memory effects, in Asia-Pacific Microwave Conf. Yokohama, December 06, 10431047.Google Scholar
[11]Gilabert, P.L.; Silveira, D.; Montoro, G.; Gadringer, M.E.; Bertran, E.: Heuristic algorithms for power amplifier behavioral modeling. IEEE Microwave Wireless Compon. Lett., 17 (2007), 715717.CrossRefGoogle Scholar
[12]Gilabert, P.L.; Montoro, G.; Cesari, A.: A recursive digital predistorter for linearizing RF power amplifiers with memory effects, in Asia-Pacific Microwave Conf., Yokohama, December 06, 10431047.Google Scholar
[13]Montoro, G.; Gilabert, P.L.; Bertran, E.; Cesari, A.; Silveira, D.: A new digital predictive predistorter for behavioral power amplifier linearization. IEEE Microwave Wireless Compon. Lett., 17 (2007), 448450.CrossRefGoogle Scholar
[14]Gilabert, P.L.; Cesari, A.; Montoro, G.; Bertran, E.; Dilhac, J.M.: Multi look-up table FPGA implementation of an adaptive digital predistorter for linearizing RF power amplifiers with memory effects. IEEE Tran. Microwave Theory Tech., 56 (2008), 372384.CrossRefGoogle Scholar