Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T08:31:15.879Z Has data issue: false hasContentIssue false

Active 5G radio resource management measurements using a multiple CATR reflector system

Published online by Cambridge University Press:  08 November 2022

Corbett Rowell*
Affiliation:
Rohde & Schwarz GmbH Co. KG, Munich, Germany
Adrian Cardalda Garcia
Affiliation:
Rohde & Schwarz GmbH Co. KG, Munich, Germany
Benoit Derat
Affiliation:
Rohde & Schwarz GmbH Co. KG, Munich, Germany
*
Author for correspondence: Corbett Rowell, E-mail: [email protected]

Abstract

This paper presents results for active and passive measurements using a novel method based on multiple compact antenna test range (CATR) reflectors to perform simultaneous multiple angle measurements in order to characterize the beam-forming characteristics in a real environment of the 5G devices operating in the millimeter wave frequency band: 24–44 GHz. The over-the-air (OTA) system generates four planar wavefronts with different incidence angles, realizing up to five pairs of angular spreads or four switched/simultaneous angles of arrival. The initial target application is radio resource management (RRM) testing, where the execution of mobility procedures and radio link monitoring of a 5G millimeter wave device are evaluated. The applicability of the multi-reflector approach to RRM testing is measured with commercial 5G handsets, through three test scenarios. The paper demonstrates that baseband (non OTA) testing is not sufficient for RRM FR2, as the results are influenced by the direction of arrival of the signal. It is further shown that OTA testing in a multi-reflector CATR system and a careful selection of a representative set of test directions is critical for full characterization of the performance of a wireless device operating in the millimeter wave bands.

Type
EuCAP 2021 Special Issue
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

TS 38.133, 3GPP; TSG RAN; NR; Requirements for support of radio resource management, V16.0.0.Google Scholar
3GPP Technical Report 37.977, Verification of radiated multi-antenna reception performance of User Equipment (UE), v14.5.0.Google Scholar
Rowell, C, Cardalda-Garcia, A and Derat, B (2020) CATR Reflector Measurement System with Multiple Reflectors for Multiple Angles of Arrival in Millimeter Wave Frequency Bands. AMTA 2020 Proceedings, Virtual.Google Scholar
Dragone, C (1978) Offset multireflector antennas with perfect pattern symmetry and polarization discrimination. The Bell System Technical Journal 57, 26632684.CrossRefGoogle Scholar
Rodriguez, J, Geise, A, Schmidt, CH, Migl, J and Steiner, H-J (2013) Asymptotic and full wave simulation models for compensated compact range design and analysis. In 2013 Loughborough Antennas & Propagation Conference (LAPC), pp. 461–466.CrossRefGoogle Scholar
Hakli, J, Koskinen, T, Ala-Laurinaho, J and Raisanen, AV (2005) Dual reflector feed system for hologram-based compact antenna test range. IEEE Transactions on Antennas and Propagation 53, 39403948.CrossRefGoogle Scholar
Rowell, C, Derat, B and Cardalda-Garcia, A (2020) Multiple CATR reflector system for multiple angles of arrival measurements of 5G millimeter wave devices. IEEE Access 8, 211324211334.CrossRefGoogle Scholar
TS 38.533, 3GPP; TSG RAN; NR; UE Conformance Specification; Radio Resource Management (RRM), V16.1.0.Google Scholar
Derat, B, Rowell, C and Tankielun, A (2018) Promises of near-field software and hardware transformations for 5G OTA. 2018 IEEE Conference on Antenna Measurements & Applications (CAMA), pp. 1–4.CrossRefGoogle Scholar
TS 38.101-2, 3GPP; TSG RAN; NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 standalone, V17.0.Google Scholar
TS 38.521-2, 3GPP; TSG RAN; NR; Radio transmission and reception; Part 2: Range 2 standalone, V16.9.0.Google Scholar
TS 38.331, 3GPP; TSG RAN; NR; RRC protocol specification, V16.5.0.Google Scholar