Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T07:59:36.999Z Has data issue: false hasContentIssue false

Achievements on circularly polarized horn-fed metallic electromagnetic band gap antenna design

Published online by Cambridge University Press:  07 February 2013

Eric Arnaud*
Affiliation:
XLIM – CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Régis Chantalat
Affiliation:
CISTEME, 12 rue Gémini, 87068 Limoges Cedex, France
Thierry Monediere
Affiliation:
XLIM – CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Emmanuel Rodes
Affiliation:
XLIM – CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Marc Thevenot
Affiliation:
XLIM – CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
*
Corresponding author: E. Arnaud Email: [email protected]

Abstract

This paper presents a comprehensive study on the design of a 30 GHz, circularly polarized (CP), single horn-fed, metallic electromagnetic band gap (EBG) antenna. Three different approaches have been studied in order to create a 20 dBi antenna with an axial ratio (AR) lower than 1 dB over a 500 MHz bandwidth. Based on theoretical and experimental results, a conclusion is given on the best solution to obtain the desired characteristics. Perspectives and guidelines are also given for the design of multi-feed EBG antenna as a reflector focal feed for Ka-Band Space Applications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Rudge, A.W.; Adatia, N.A.: Offset-parabolic-reflector antennas: a review. Proc. IEEE, 66 (12) (1978), 15921618.Google Scholar
[2]Jackson, D.R.; Oliner, A.A.: Leaky wave propagation and radiation for a narrow beam multiple layer dielectric structure. IEEE Trans. Ant. Prop., 41 (3) (1993), 344348.Google Scholar
[3]Thevenot, M.; Cheype, C.; Reineix, A.; Jecko, B.: Directive photonic bandgap antennas. IEEE Trans. Microw. Theory Tech., 47 (11) (1999), 21152122.Google Scholar
[4]Sauleau, R.; Le Ray, G.; Coquet, Ph.: Parametric study and synthesis of 60 GHz Fabry-Perot resonators. Microw. Opt. Technol. Lett. (USA), 34 (4) (2002), 247252.Google Scholar
[5]Chreim, H. et al. : Design of a multi-feed EBG antenna as a focal array for Ka-band space applications. EUCAP, (2010), 15, 12–16.Google Scholar
[6]Chantalat, R.; Thévenot, M.; Monédière, T.; Jecko, B.; Dumon, P.: Interlaced feeds design for a multibeam reflector antenna using a 1D dielectric PBG resonator, in Ant. Prop. Symp., Colombus, June 2003.Google Scholar
[7]Neto, A.; Llombart, N.; Gerini, G.; Bonnedal, M.; De Maagt, P.: EBG enhanced feeds for high aperture efficiency reflector antennas. EUCAP 2006, Nice, 6–10 November 2006.Google Scholar
[8]Arnaud, E.; Chantalat, R.; Monediere, T.; Rodes, E.; Thevenot, M.: Performance enhancement of self-polarizing metallic EBG antennas. IEEE AWPL, 9 (2010), 538541.Google Scholar
[9]Llombart, N.; Neto, A.; Gerini, G.; Bonnedal, M.; De Maagt, P.: Impact of mutual coupling in leaky wave enhanced imaging arrays. IEEE Trans. Ant. Prop., 56 (4) (2008), 12011206.Google Scholar
[10]Chreim, H. et al. : Analysis of capabilities to achieve overlapped radiating apertures by using a multi-feed EBG structure loaded by passive filtering functions. EUCAP, (2010), 15, 12–16.Google Scholar
[11]Chantalat, R. et al. : Enhanced EBG resonator antenna as feed of a reflector antenna in Ka band. IEEE AWPL, 7 (2008), 349353.Google Scholar
[12]Arnaud, E.; Chantalat, R.; Koubeissi, M.; Monediere, T.; Rodes, E.; Thevenot, M.: Global design of an EBG antenna and meander-line polarizer for circular polarization. IEEE AWPL, 9 (2010), 215218.Google Scholar
[13]Chantalat, R. et al. : Improvement of the performances of metallic electromagnetic band gap structure dedicated to illuminate a multibeam reflector antenna, in Proc. EuCAP 2006 (ESA SP-626), p.538.1 6–10.Google Scholar
[14]Gardner Fox, A.: An adjustable wave-guide phase changer. Proc. IRE, 35 (12) (1947), 14891498.Google Scholar
[15]Ayres, W.P.: Broad-band quarter-wave plates. IRE Trans. Microw. Theory Tech., 5 (4) (1957), 258261.Google Scholar
[16]Davis, D.; Digiondomenico, O.; Kempic, J.: A new type of circularly polarized antenna element, in Antennas and Propagation Society International Symp., Ann Arbor, Mich. Volume 5, October 1967.Google Scholar
[17]Chen, M.; Tsandoulas, G.N.: A wide-band square-waveguide array polarizer. IEEE Trans. Antennas Propag., 21 (3) (1973), 389391.Google Scholar
[18]Drouet, J.; Thevenot, M.; Chantalat, R. et al. : Global Synthesis method for the optimization of multifeed EBG antennas. Int. J. Antennas Propag., Vol 2008, Article ID 790358, 6 pages, 2008. doi: 10.1155/2008/790358, see http://www.hindawi.com/journals/ijap/2008/790358/cta/.Google Scholar
[19]Kumar, G.; Ray, K.P.: “Broadband Microstrip Antennas” Editeur Artech House, Broadband Circularly Polarized MSAs, pp. 315316.Google Scholar
[20]Bhattacharyya, A.K.; Chwalek, T.J.: Analysis of multilayered meander line polarizer. Int. J. Microw. Millim.-Wave Comput.-Aided Eng., 7 (1997), 442454.3.0.CO;2-P>CrossRefGoogle Scholar