Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T21:01:51.078Z Has data issue: false hasContentIssue false

A wideband CMOS distributed amplifier with slow-wave shielded transmission lines

Published online by Cambridge University Press:  15 November 2010

Rosa R. Lahiji*
Affiliation:
Department of Electrical Engineering & Computer Science, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA. Phone: +1 216 368 4120. West Wireless Health Institute, 10350 North Torrey Pines Road, La Jolla, CA 92037, USA.
Linda P.B. Katehi
Affiliation:
University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
Saeed Mohammadi
Affiliation:
Purdue University, Birck Nanotechnology Center, 1205 West State Street, West Lafayette, IN 47907, USA.
*
Corresponding author: R.R. Lahiji Email: [email protected]

Abstract

A four-stage distributed amplifier utilizing low-loss slow-wave shielded (SWS) transmission lines is implemented in a standard 0.13 μm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The amplifier when biased in its high current operating mode of IDtotal = 46 mA (at Vdd = 2.2 V, Pdiss = 101 mW) provides a forward transmission gain of 11.3 ± 1.5 dB with a 3-dB bandwidth of 17 GHz and a gain-bandwidth product of 74 GHz. The noise figure (NF) under the same bias condition is better than 8.5 dB up to 10 GHz. The measured output-referred 1-dB compression point is higher than +2 dBm. The amplifier is also measured under low-bias condition of IDtotal = 18 mA (at Vdd = 1.15 V, Pdiss = 20.7 mW). It provides a transmission gain of 6.6 ± 1 dB, a 3-dB bandwidth of 14.8 GHz, a gain-bandwidth product of 35.5 GHz, and a NF of better than 8.6 dB up to 10 GHz. Despite using a simple four-stage cascode design, this distributed amplifier achieves very high-gain-bandwidth product at a relatively low DC power compared to the state of the art CMOS distributed amplifiers reported in the literature. This is due to the incorporation of low-loss SWS coplanar waveguide (CPW) transmission lines with a loss factor of nearly 50% of that of standard transmission lines on CMOS-grade Si substrate.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Schneider, K.; Driad, R.; Makon, R.E.; Weimann, G.: Distributed amplifier MMIC with 21 dB gain and 90 GHz bandwidth using InP-based DHBTs, in IEEE Symp. on Compound Semiconductor Integrated Circuit, Portland, OR, USA, 2007.CrossRefGoogle Scholar
[2]Deng, K.; Huang, T.; Wang, H.: Design and analysis of novel high-gain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages. IEEE Trans. Microw. Theory Tech., 51 (2003), 21882196.CrossRefGoogle Scholar
[3]Mohammadi, S.; Park, J.-W.; Pavlidis, D.; Guyaux, J.L.; Garcia, J.C.: Design optimization and characterization of high-gain GaInP/GaAs HBT distributed amplifiers for high-bit-rate telecommunication. IEEE Trans. Microw. Theory Tech., 48 (2000), 10381044.CrossRefGoogle Scholar
[4]Lee, G.; Ko, H.; De Flaviis, F.: Advanced design of broadband distributed amplifier using a SiGe BiCMOS technology, in IEEE MTT-S Int. Microwave Symp., Philadelphia, PA, USA, 2003.Google Scholar
[5]Aguirre, J.; Plett, C.: 50-GHz SiGe HBT distributed amplifiers employing constant-k and m-derived filter sections. IEEE Trans. Microw. Theory Tech., 52 (2004), 15731579.CrossRefGoogle Scholar
[6]Guan, X.; Nguyen, C.: Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems. IEEE Trans. Microw. Theory Tech., 54 (2006), 32783283.CrossRefGoogle Scholar
[7]Aguirre, J.; Plett, C.; Schvan, P.: A 2.4Vp-p output, 0.045–32.5 GHz CMOS distributed amplifier, in IEEE Radio Frequency Integrated Circuits Symp., Honolulu, HI, 2007.Google Scholar
[8]Arbabian, A.; Niknejad, A.M.: A broadband distributed amplifier with internal feedback providing 660 GHz GBW in 90 nm CMOS, in IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2008.CrossRefGoogle Scholar
[9]Chien, J.-C.; Chen, T.-Y.; Lu, L.-H.: A 9.5-dB 50-GHz matrix distributed amplifier in 0.18 µm CMOS, in IEEE Symp. on VLSI Circuits, Homolulu, HI, 2006.Google Scholar
[10]Heydari, B.; Bohsali, M.; Adabi, E.; Niknejad, A.M.: Millimeter-wave devices and circuit blocks up to 104 GHz in 90 nm CMOS. IEEE J. Solid-State Circuits, 42 (2007), 28932903.Google Scholar
[11]Chen, T.; Chien, J.; Lu, L.: A 45.6-GHz matrix distributed amplifier in 0.18-nm CMOS, in IEEE Proc. on Custom Integrated Circuits Conference, San Jose, CA, USA, 2005.Google Scholar
[12]Cheung, T.S.D.; Long, J.R.: Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits. IEEE J. Solid-State Circuits, 41 (2006), 11831200.CrossRefGoogle Scholar
[13]Doan, C.H.; Emami, S.; Niknejad, A.M.; Brodersen, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits, 40 (2005), 144155.CrossRefGoogle Scholar
[14]Ma, Y.; Rejaei, B.; Zhuang, Y.: Low-loss on-chip transmission lines with micro-patterned artificial dielectric shields. IEEE Electron. Lett., 44 (2008), 913914.CrossRefGoogle Scholar
[15]Ayasli, Y.; Mozzi, R.L.; Vorhaus, J.L.; Reynolds, L.D.; Pucel, R.A.: A monolithic GaAs 1–13-GHz traveling-wave amplifier. IEEE Trans. Electron Devices, 29 (1982), 10721077.CrossRefGoogle Scholar
[16]Heydari, B. et al. : A 60-GHz 90-nm CMOS cascode amplifier with interstage matching, in IEEE European Microwave Integrated Circuits Conf., Munich, Germany, 2007.CrossRefGoogle Scholar
[17]Amaya, R.E.; Tarr, N.G.; Plett, C.: A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguides, in IEEE Symp. on Radio Frequency Integrated Circuits, Fort Worth, TX, USA, 2004.Google Scholar
[18]Lu, L.H.; Chen, T.Y.; Lin, Y.J.: A 32-GHz non-uniform distributed amplifier in 0.18 µm CMOS. IEEE Microw. Wirel. Compon. Lett., 15 (2005), 745747.Google Scholar
[19]Moez, K.; Elmasry, M.: A 10 dB 44 GHz loss-compensated CMOS distributed amplifier, in IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2007.CrossRefGoogle Scholar
[20]Arbabian, A.; Niknejad, A.M.: A tapered cascaded multi-stage distributed amplifier with 370 GHz GBW in 90 nm CMOS, in IEEE Radio Frequency Integrated Circuits Symp., Atlanta, GA, USA, 2008.CrossRefGoogle Scholar
[21]Yang, S.; Seo, K.: A compact and wideband GaAs P-HEMT distributed amplifier IC based on a micro-machined CPW, in IEEE MTT-S Int. Microwave Symp., Boston, MA, USA, 2000.Google Scholar
[22]Strid, E.W.; Gleason, K.R.: A DC-12 GHz monolithic GaAs FET distributed amplifier. IEEE Trans. Microwave Theory and Techniques, 30 (1982), 969975.CrossRefGoogle Scholar