Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T13:49:19.020Z Has data issue: false hasContentIssue false

A true-time-delay networks design technique

Published online by Cambridge University Press:  06 November 2014

Alberto Leggieri*
Affiliation:
Dipartimento di Ingegneria Elettronica, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 1, 00133 Roma, Italy
Davide Passi
Affiliation:
Dipartimento di Ingegneria Elettronica, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 1, 00133 Roma, Italy
Franco Di Paolo
Affiliation:
Dipartimento di Ingegneria Elettronica, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 1, 00133 Roma, Italy
*
Corresponding author:A. Leggieri Email: [email protected]

Abstract

This paper proposes a technique to design wide band switched-line (SL) true-time-delay (TTD) networks, commonly used for phased array antenna (PAA) applications. This study investigates the constant-delay behavior of switched-line phase shifters based on single-pole double-throw (SPDT) switches. Circuit sizing starts by considering the effective S-parameters of the switches, to use their non-idealities as an integral part of the phase shift linearly dependent to the frequency and by considering, from the beginning, the possible spatial positioning of elements that allows the circuit feasibility as a design target. The aim of this study is to provide a technique suitable for the design of well-matched TTD networks with a flat delay in wide bandwidth. In this paper, we propose new design formulas for which we show a single-frequency implementation. A computational strategy is used to obtain numerical solutions of the derived equations with this study. Finally, a monolithic X-band TTD circuit example is shown.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Parker, D.: Phased arrays-part I theory and architectures. IEEE Trans. Microw. Theory Tech., 50 (2002), 678687.Google Scholar
[2]Holpp, W.; Worning, C.: New electronically scanned array radars for airborne applications, in Asia-Pacific Microw. Conf., Bangkok, 2007, 1–5.Google Scholar
[3]Sarcione, M.; Puzella, A.: Technology trends for future low cost phased arrays, in IEEE MTT-S Int. Microwave Symp. Digest, Anaheim, 2010, 688–690.CrossRefGoogle Scholar
[4]Van Bezouwen, H.; Feldle, H.P.; Holpp, W.: Status and trends in AESA-based radar, in IEEE MTT-S Int. Microwave Symp. Digest, Anaheim, 2010, 526–529.Google Scholar
[5]Gesell, L.H.; Feinleib, R.E.: True Time Delay Beamforming, Essex Corporation Rome Laboratory Griffiss Air Force Base Final Technical Report, New York, 1994, 1.Google Scholar
[6]Helmy, A.A.; Entesari, K.: Reduced-size ultra-wideband true-time-delay beam-forming receivers, in IEEE Int. Symp. on Circuits and Systems, Rio De Janeiro, 2011, 1287–1290.Google Scholar
[7]Junwei, D.; Cheung, R.: Optimized amplitude taper for a linear array of multiple true-time-delay beams, in IEEE Int. Symp. on Phased Array Systems and Technology, Waltham, 2010, 324–331.Google Scholar
[8]Ta-Shun, C.; Hashemi, H.: True-time-delay-based multi-beam arrays. IEEE Trans. Microw. Theory Tech., 61 (2013), 30723082.Google Scholar
[9]Chen, Y.; Wu, K.; Zhao, F.; Kim, G.; Chen, R.T.: Reconfigurable true-time delay for wideband phased-array antennas, in Proc. SPIE, 5363, The International Society for Optical Engineering, Bellingham, 2004, 125–130.CrossRefGoogle Scholar
[10]Legay, H. et al. : Integrated antennas, in Report on technologies and facilities assessment (Project number: FP6-IST 508009, Document number: FP6-IST 508009/2.1-D3, Activity: 2.1, Project title: Antenna Centre of Excellence), European Commission 6th Framework Programme, Bruxelles, 2004, 16–23.Google Scholar
[11]Garver, R.V.: Broad-band diode phase shifters. IEEE Trans. Microw. Theory Tech., 20 (1972), 314323.Google Scholar
[12]Gao, Y.; Zheng, Y.-B.; Bai, L.; Qin, R.: Design and modeling of 4-bit MEMS switched-line phase shifter, in Int. Conf. on Electronics, Communications and Control, Ningbo, 2011, 798–801.Google Scholar
[13]Yang, J.G.; Lee, J.; Yang, K.: A W-band InGaAs PIN-MMIC digital phase-shifter using a switched transmission-line structure, in Int. Conf. on Indium Phosphide and Related Materials, Santa Barbara, 2012, 99–101.Google Scholar
[14]Li, W.-T.; Kuo, Y.-H.; Wu, Y.-M.; Cheng, J.-H.; Huang, T.-W.; Tsai, J.-H.: An X-band full-360° reflection type phase shifter with low insertion loss, in 7th European Microwave Integrated Circuits Conf., Amsterdam, 2012, 754–757.Google Scholar
[15]Di Paolo, F.: A simple, high yield 6 to 18 GHz GaAs monolithic phase shifter. Microw. J., 40 (1997), 92104.Google Scholar
[16]Du, Y.; Bao, J.; Wu, W.; Cheng, T.; Mu, P.: Modeling and design of 5-bit X-band RF MEMS distributed phase shifter, in Int. Conf. on Microwave and Millimeter Wave Technology, Chengdu, 2010, 1770–1773.Google Scholar
[17]Bovadilla, R.G.; Rehder, G.P.; Serrano, A.L.C.; Ferrari, P.: Distributed MEMS phase shifter for millimeter-wave applications, in Symp. on Microelectronics Technology and Devices, Curitiba, 2013, 1–4.Google Scholar
[18]Maruhashi, K.; Mizutani, H.; Ohata, K.: Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches. IEEE Trans. Microw. Theory Tech., 48 (2000), 13131317.Google Scholar
[19]Pozar, D.M.: Transmission Line Theory, in Microwave Engineering, 4th edn, John Wiley & Sons Inc., Hoboken, 2012, 4859.Google Scholar
[20]Willms, J.G.; Ouacha, A.; De Boer, L.; Van Vliet, F.E.: A wideband GaAs 6-bit true-time delay MMIC employing on-chip digital drivers, in 30th European Microwave Conf., Paris, 2000, 2–4.Google Scholar
[21]Choi, J.Y.; Cho, M.-K.; Bae, D.; Kim, J.-G.: A 5–20 GHz 5-bit true time delay circuit in 0.18 µm CMOS technology. J. Semiconduct. Technol. Sci., 13 (2013), 193196.Google Scholar