Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T18:46:04.833Z Has data issue: false hasContentIssue false

A SiGe-based fully-integrated 122-GHz FMCW radar sensor in an eWLB package

Published online by Cambridge University Press:  10 February 2017

Muhammad Furqan*
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
Faisal Ahmed
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
Reinhard Feger
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
Klaus Aufinger
Affiliation:
Infineon Technologies, Am Campeon, 85579 Neubiberg, Germany
Walter Hartner
Affiliation:
Infineon Technologies, Wernerwerk Str. 2, 93049 Regensburg, Germany
Andreas Stelzer
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
*
Corresponding author: M. Furqan Email: [email protected]

Abstract

High-performance SiGe HBTs and advancements in packaging processes have enabled system-in-package (SiP) designs for millimeter-wave applications. This paper presents a 122-GHz bistatic frequency modulated continuous wave (FMCW) radar SiP. The intended applications for the SiP are short-range distance and angular position measurements as well as communication links between cooperative radar stations. The chip is realized in a 130-nm SiGe BiCMOS technology and is based on a fully differential frequency-multiplier chain with in phase quadrature phase receiver and a binary phase shift keying modulator in the transmit chain. On-wafer measurement results show a maximum transmit output power of 2.7 dBm and a receiver gain of 11 dB. The chip consumes a DC power of 570 mW at a supply voltage of 3.3 V. The fabricated chip is integrated in an embedded wafer level ball grid array (eWLB) package. Transmit/receive rhombic antenna arrays with eight elements are designed in two eWLB packages with and without backside metal, with a measured peak gain of 11 dBi. The transceiver chip size is 1.8 mm × 2 mm, while the package size is 12 mm × 6 mm, respectively. FMCW measurements have been conducted with a sweep bandwidth of up to 17 GHz and a measured range resolution of 1.5 cm has been demonstrated. 2D positions of multiple targets have been computed using two coherently linked radar stations.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Böck, J. et al. SiGe HBT and BiCMOS Process Integration Optimization within the DOTSEVEN Project, Bipolar/BiCMOS Circuits and Technol. Meeting (BCTM), Boston, 2015.CrossRefGoogle Scholar
[2] Schröter, M. et al. SiGE HBT technology: future trends and TCAD-based roadmap, in Proceedings of the IEEE, 2016 (in print).Google Scholar
[3] Feger, R.; Pfeffer, C.; Scheiblhofer, W.; Schmid, C.; Lang, M.; Stelzer, A.: A 77-GHz cooperative radar system based on multi-channel FMCW stations for local positioning applications. IEEE Trans. Microw. Theory Tech., 61 (1) (2013), 676684.CrossRefGoogle Scholar
[4] Nasr, I. et al. A highly integrated 60 GHz 6-channel transceiver with antenna in package for smart sensing and short-range communications. IEEE J. Solid-State Circuits, 51 (9) (2016), 20662076.CrossRefGoogle Scholar
[5] Grzyb, J.; Heinemann, B.; Pfeiffer, U.R.: A fully integrated 0.55 THz near-field sensor with a lateral resolution down to 8 µm in 0.13 µm SiGe BiCMOS, in IEEE ISSCC Digest of Technical Papers, San Francisco, 2016, 424426.CrossRefGoogle Scholar
[6] Sarhmah, N.; Vazquez, P.R.; Grzyb, J.; Foerster, W.; Heinemann, B.; Pfeiffer, U.R.: A wideband fully integrated SiGe chipset for high data rate communication at 240 GHz, in Proc. European Microwave Integrated Circuits Conf., London, UK, 2016, 181184.CrossRefGoogle Scholar
[7] Köhler, M.; Hasch, J.; Blöcher, H.L.; Schmidt, L.-P.: Feasibility of automotive radar at frequencies beyond 100 GHz. Int. J. Microw. Wireless Technol., 5 (1), 2013, 4954.CrossRefGoogle Scholar
[8] Wagner, T.; Feger, R.; Stelzer, A.: Modification of DBSCAN and application to range/Doppler/DoA measurements for pedestrian recognition with an automotive radar system, in Proc. IEEE Radar Conf., Paris, 2015, 269272.CrossRefGoogle Scholar
[9] Ng, H.J.; Wessel, J.; Genschow, D.; Wang, R.; Sun, Y.; Kissinger, D.: Miniaturized 122 GHz System-on-chip radar sensor with on-chip antennas utilizing a novel antenna design approach, in IEEE MTT-S Int. Microw. Symp. Digest, San Diego, CA, 2016, 14.CrossRefGoogle Scholar
[10] Zhang, Y.P.; Liu, D.: Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications. IEEE. Trans. Antennas Propag., 57 (10) (2009), 28302841.CrossRefGoogle Scholar
[11] Furqan, M.; Ahmed, F.; Feger, R.; Aufinger, K.; Stelzer, A.: A 122-GHz system-in-package radar sensor with BPSK modulator in a 130-nm SiGe BiCMOS technology, in Proc. European Microwave Conf., London, UK, 2016, 683686.CrossRefGoogle Scholar
[12] Hamidipour, A.; Feger, R.; Poltschak, S.; Stelzer, A.: A 160-GHz system in package for short-range mm-wave applications. Int. J. Microw. Wireless Technol., 6 (2014), 361369.CrossRefGoogle Scholar
[13] Fischer, A.; Tong, Z.; Hamidipour, A.; Maurer, L.; Stelzer, A.: 77-GHz multi-channel radar transceiver with antenna in package. IEEE. Trans. Antennas Propag., 62 (3) (2014), 13861394.CrossRefGoogle Scholar
[14] Cao, B.; Wang, H.; Huang, Y.; Wang, J.; Xu, H.: A novel antenna-in-package with LTCC technology for W-band application. IEEE Antennas Wireless Propag. Lett., 13 (2014), 357360.Google Scholar
[15] Göttel, B.; Beer, S.; Pauli, M.; Zwick, T.: Ultra wideband D-band antenna integrated in a LTCC based QFN package using a flip-chip interconnect, in Proc. European Microwave Conf., Nuremberg, Germany, 2013, 227230.Google Scholar
[16] Beer, S.; Gulan, H.; Rusch, C.; Zwick, T.: Integrated 122-GHz antenna on a flexible polyimide substrate with flip chip interconnect. IEEE Trans. Microw. Theory Tech., 59 (5) (2011), 12741283.Google Scholar
[17] Seler, E.; Wojnowski, M.; Sommer, G.; Weigel, R.: Comparative analysis of high-frequency transitions in embedded wafer level BGA (eWLB) and quad flat no leads packages, in IEEE Electronics Packaging Technology Conf. (EPTC), Singapore, 2012, 99102.CrossRefGoogle Scholar
[18] Hamidipour, A.; Fischer, A.; Maurer, L.; Hartner, W.; Stelzer, A.: Antennas in package with stacked metallization, in Proc. European Microwave Conf., Nuremberg, Germany, 2013, 5659.Google Scholar
[19] Sarkas, I.; Hasch, J.; Balteanu, A.; Voinigescu, S.: A fundamental frequency 120-GHz SiGe BiCMOS distance sensor with integarated antenna. IEEE Trans. Microw. Theory Tech., 60 (3) (2012), 795812.CrossRefGoogle Scholar
[20] Sun, Y. et al. A low-cost miniature 120 GHz SiP FMCW/CW radar sensor with software linearization, in IEEE ISSCC Digest of Technical Papers, 2013, 148149.Google Scholar
[21] Chakraborty, A.; Trotta, S.; Wuertele, J.; Weigel, R.: A D-band transceiver front-end for broadband applications in a 0.35 µm SiGe bipolar technology, in IEEE Radio Frequency Integrated Circuits Symp., 2014, 405408.CrossRefGoogle Scholar
[22] Jaeschke, T.; Bredendiek, C.; Küppers, S.; Pohl, N.: High-precision D-band FMCW-radar sensor based on a wideband SiGe-transceiver MMIC. IEEE Trans. Microw. Theory Tech., 62 (12) (2014), 35823597.CrossRefGoogle Scholar