Printed compact four-port wearable MIMO antennas for wideband wireless applications
Published online by Cambridge University Press: 22 August 2022
Abstract
In this paper, a simple and compact coplanar waveguide (CPW)-fed four coexisting inverted-L-shaped radiating elements based wideband (ILW) multi-input and multi-output (MIMO) antenna has been presented for wearable wireless applications. The 50 Ω CPW feed structure has been used to excite the four inverted-L-shaped radiators in a wide square slot of the proposed four-port wearable MIMO antenna. The four diagonal strips are extended from the corners of the wide square slot to form a square split ring structure in the center, which suppresses the coupling of electromagnetic waves among coexisting compact quad inverted-L-shaped radiators. The proposed ILW wearable MIMO antenna achieves a wide −10 dB simulated impedance bandwidth of 58.18% (3.9–7.1 GHz) and more than 30 dB isolation along with much reduced envelope correlation coefficient (<0.0002), high diversity gain (>9.9 dB), and specific absorption rate lower than 1 W/kg in the entire operational band. The simulated results are in good agreement with the measured ones. This ensures its utility for several wearable wireless applications in the C-band that comprises WLAN (5 and 5.2 GHz), Wi-MAX (5.5 GHz), and ISM band (5.8 GHz) applications.
- Type
- Biomedical Applications
- Information
- International Journal of Microwave and Wireless Technologies , Volume 15 , Issue 5 , June 2023 , pp. 810 - 816
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association
References
- 3
- Cited by