Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T01:22:37.387Z Has data issue: false hasContentIssue false

Optimization circuit model of a multiconductor transmission line

Published online by Cambridge University Press:  28 February 2014

Youssef Mejdoub*
Affiliation:
Department of Physics, Laboratory of Electrical Systems and Telecommunications, Faculty of Sciences and Technology, Cadi Ayyad University, P.O. Box 549/40000, Marrakech, Morocco. Phone: +212 6 66 61 34 55
Hicham Rouijaa
Affiliation:
Department of Physics, Laboratory of Electrical Systems and Telecommunications, Faculty of Sciences and Technology, Cadi Ayyad University, P.O. Box 549/40000, Marrakech, Morocco. Phone: +212 6 66 61 34 55 Department of Matter Sciences, Poly-disciplinary Faculty, Cadi Ayyad University, P.O. Box 4162/46000, Safi, Morocco
Abdelilah Ghammaz
Affiliation:
Department of Physics, Laboratory of Electrical Systems and Telecommunications, Faculty of Sciences and Technology, Cadi Ayyad University, P.O. Box 549/40000, Marrakech, Morocco. Phone: +212 6 66 61 34 55
*
Corresponding author: Y. Mejdoub Email: [email protected]

Abstract

This paper presents an optimization circuit model of multiconductor transmission lines in the time domain. Several methods allow calculation of the currents and the tensions distributed on the uniform transmission line. Most of these methods are limited to lines with constant losses, and only for linear loads. The macro-model we propose, using Pade approximant, employs more variables and allows it to reduce the necessary cells' number in modelization than the traditional cells cascade method. This macro-model, using the Modified Nodal Analysis method (MNA), is suitable for an inclusion in circuit simulator, such as Esacap, Spice, and Saber. The MNA method offers an efficient means to discretize transmission lines on real and complex cells compared to the conventional lumped discretization. In addition, the model can directly handle frequency-dependent line parameters in the time domain. An example, with experimental measures taken from literature, is presented to validate the model we propose, and show its importance. It is necessary for assuring the results validity obtained from Pade macro-model to study its stability and passivity.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Paul, C.R.: Analysis of Multiconductor Transmission Lines, Wiley, New York, 1994.Google Scholar
[2] Bakoglu, H.B.: Circuits, Interconnections and Packaging for VLSI, Addison-Wesley, Reading, MA, 1990.Google Scholar
[3] Branin, F.H. Jr: Transient analysis of lossless transmission lines. Proc. IEEE, 55 (1967), 20122013.CrossRefGoogle Scholar
[4] Mejdoub, Y.; Rouijaa, H.; Ghammaz, A.: Transient analysis of lossy multiconductor transmission lines model based by the characteristics method. Int. J. Eng. Technol., 3 (1) (2011), 4753.Google Scholar
[5] Mejdoub, Y.; Saih, M.; Rouijaa, H.; Ghammaz, A.: Frequency-domain modeling and simulation of coupled lossy multiconductor transmission lines. Int. J. Comput. Sci. Issue, 10 (5) (2013), 128133.Google Scholar
[6] Dounavis, A.; Xin, Li.; Nakhla, M.S.; Achar, R.: Passive closed-form transmission-line model for general-purpose circuit simulators. IEEE Trans. Microw. Theory Tech., 47 (12) (1999), 24502459.Google Scholar
[7] Baker, G.A. Jr.; Graves-Morris, P.: Padé Approximants, Part I & II, Encyclopedia of mathematics and its applications, 1992.Google Scholar
[8] Rouijaa, H.: Modélisation des Lignes de Transmission Multiconducteurs par La méthode des Approximantes de Pade : Approche circuit. Ph.D. Génie Electrique, Université de Droit d'Economie et des Sciences d'Aix-Marseille (Aix-Marseille III), Mai 2004.Google Scholar
[9] Stangerup, P.: ESACAP – a PC-implemented general-purpose circuit simulator, IEEE Circuits Devices Mag., 4 (4) (1988), 2025.Google Scholar
[10] Ho, C.W.; Ruehli, A.E.; Brennan, P.A.: The modified nodal approach to network analysis. IEEE Trans. Circuit Syst., 22 (6) (1975), 504509.Google Scholar
[11] Paul, C.R.: Introduction to Electromagnetic Compatibility, Wiley 2nd ed, New York, 2006.Google Scholar
[12] Lozano, R.; Brogliato, B.; Egeland, O.; Maschke, B.: Dissipative Systems Analysis and Control. Theory and Applications, Springer-Verlag, London, 2000.Google Scholar
[13] Triverio, P.; Grivet-Taloua, S.; Nakhla, M.S.; Canaveo, F.G; Achar, R.: Stability, causality and passivity in electrical interconnect models. IEEE Trans. Adv. Packaging, 30 (4) (2007), 795808.Google Scholar
[14] Feldmann, M.: Théorie des réseaux et systèmes linéaires, CENT, Eyrolles, 1990.Google Scholar
[15] Desoer, C.A.; Kuh, E.S.: Basic Circuit Theory, McGraw-Hill International Book Company, New York, 1969.Google Scholar
[16] Dounavis, A.; Achar, R.; Nakhla, M.: Passive macromodels for distributed high-speed networks. IEEE Trans. Microw. Theory Tech., 11 (2001), 16861696.Google Scholar
[17] Kuh, E.S; Rohrer, R.: Theory of Active Linear Networks, Holden-Day Inc., San Francisco, 1967.Google Scholar
[18] Louis, W.: Network Analysis and Synthesis, McGraw-Hill, New York, 1962.Google Scholar
[19] Dounavis, A.; Achar, R.; Nakhla, M.S.: Efficient sensitivity analysis of lossy multiconductor transmission lines with nonlinear terminations. IEEE Trans. Microw. Theory Tech., 49 (12) (2001), 22922299.CrossRefGoogle Scholar
[20] Chang, F.Y.: Transient analysis of lossless coupled transmission lines in a nonhomogeneous dielectric medium. IEEE Trans. Microw. Theory Tech., 18 (9) (1970), 616626.Google Scholar
[21] Gilles, A.: Principe théorique d'un code d'électrostatique 2D: ELF2D. Document interne Aérospatiale, N. DCR /B-71011-94, 1994.Google Scholar
[22] Inzoli, L.; Rouijaa, H.: Aseris: Emcap2000 Esacap software. Applications Handbook and Users Manual, European Aeraunotic Defense and Space, 2001.Google Scholar
[23] Vabre, J.P.: Electronique des impulsions, Tome VI: lignes couplées en régime transitoire, Fascicule 1: Couplages et parasitages entre lignes, Masson et Cie, Paris, 1972.Google Scholar