Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T12:04:27.678Z Has data issue: false hasContentIssue false

Implementation of electrothermal system-level model for RF power amplifiers in Scilab/Scicos environment

Published online by Cambridge University Press:  19 January 2010

Florent Besombes*
Affiliation:
THALES Airborne Systems, 2 avenue Gay Lussac, 78851 Elancourt, France. XLIM CNRS, 7 rue Jules Vallès, 19100 Brive La Gaillarde, France.
Raphaël Sommet
Affiliation:
XLIM CNRS, 7 rue Jules Vallès, 19100 Brive La Gaillarde, France.
Julie Mazeau
Affiliation:
THALES Airborne Systems, 2 avenue Gay Lussac, 78851 Elancourt, France.
Edouard Ngoya
Affiliation:
XLIM CNRS, 7 rue Jules Vallès, 19100 Brive La Gaillarde, France.
Jean-Paul Martinaud
Affiliation:
THALES Airborne Systems, 2 avenue Gay Lussac, 78851 Elancourt, France.
*
Corresponding author: F. Besombes Email: [email protected]

Abstract

This paper presents a behavioral electrothermal model implementation for high RF power amplifiers dedicated to the simulation of radar application in the Scilab/Scicos environment. This model, based on the direct coupling between a behavioral electrical model and a physics-based reduced thermal model, allows to predict nonlinear effects, high-frequency memory effects, and thermal effects due to the amplifier self-heating. System model implementation in Scilab/Scicos platform allows fast time domain simulation with very good convergence properties.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Pedro, J. C.; Maas, S. A.: A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches. IEEE Trans. Microwave Theory Tech., 53 (4) (2005), 11501163.CrossRefGoogle Scholar
[2]Ngoya, E.; Le Gallou, N.; Nebus, J. M.; Buret, H.; Reig, P.: Accurate RF and microwave system level modeling of wideband nonlinear circuits, in IEEE MTT-S Int. Microwave Symp. Digest, Boston, MA, vol. 1, 2000, pp. 7982.Google Scholar
[3]Root, D.-E.; Verspecht, J.; Sharrit, D.; Wood, J.; Cognata, A.: Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements. IEEE Trans. Microwave Theory Tech., 53 (11) (2005), 36563664.CrossRefGoogle Scholar
[4]Mirri, D.; Iuculano, G.; Filicori, F.; Pasini, G.; Vannini, G.; Gabriella, G. P.: A modified Volterra series approach for nonlinear dynamic systems modeling. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 49 (8) (2002), pp. 11181128.CrossRefGoogle Scholar
[5]Le Gallou, N.: Modélisation par séries de Volterra dynamiques des phénomènes de mémoire nonlinéaires pour la simulation système d'amplificateurs de puissance, Ph.D. dissertation, XLIM Research Institute, Limoges University, Limoges, France, 2001.Google Scholar
[6]Nikoukhah, R.: SCICOS, a dynamic systems modeler and simulator, in Proc. 23rd IASTED Int. Conf. on Modelling, Identification, and Control (MIC '04), Grindelwald, Switzerland, February 2004, paper 412–133, pp. 263268.Google Scholar
[7]Nikoukhah, R.; Steer, S.: SCICOS, a dynamic system builder and simulator, in IEEE Int. Conf. on Computer-Aided Control System Design, Dearborn, MI, 1996, pp. 430435.Google Scholar
[8]Mazeau, J.; Sommet, R.; Caban-Chastas, D.; Gatard, E.; Quéré, R.; Mancuso, Y.: Behavioral thermal modeling for microwave power amplifier design. IEEE Trans. Microwave Theory Tech., 55 (11) (2007), pp. 22902297.CrossRefGoogle Scholar
[9]Sommet, R.; Lopez, D.; Quéré, R.: From 3-D thermal simulation of HBT devices to their thermal model integration into circuit simulators via Ritz vectors reduction techniques, in 8th Intersociety Thermal and Thermomechanical Phenomena in Electronic Systems Conf., San Diego, CA, 2002, pp. 2228.Google Scholar
[10]Hsu, J. T.; Vu-Quoc, L.: A rational formulation of thermal circuit models for electrothermal simulation. ii. Model reduction techniques [power electronic systems]. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 43 (9) (1996), pp. 733744.Google Scholar
[11]Mons, S. et al. : SCERNE – Simulation de Chaînes d'Emission Réception de Nouvelle gEnération, in 16th “Journées Nationales Microondes” Conference, Grenoble, 2009.Google Scholar