Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T14:13:52.033Z Has data issue: false hasContentIssue false

Impact of the CNT growth process on gold metallization dedicated to RF interconnect applications

Published online by Cambridge University Press:  25 November 2010

Chin Chong Yap
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +65 81213174; Fax: +65 68967448. School of Electrical and Electronics Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798, Singapore.
Dunlin Tan
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +65 81213174; Fax: +65 68967448. School of Electrical and Electronics Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798, Singapore.
Christophe Brun
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +65 81213174; Fax: +65 68967448. XLIM UMR 6172, Université de Limoges/CNRS, 123 Avenue Albert Thomas 87060 Limoges, France.
Hong Li
Affiliation:
School of Electrical and Electronics Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798, Singapore.
Edwin Hang Tong Teo
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +65 81213174; Fax: +65 68967448. School of Electrical and Electronics Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798, Singapore.
Dominique Baillargeat*
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +65 81213174; Fax: +65 68967448.
Beng Kang Tay
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +65 81213174; Fax: +65 68967448. School of Electrical and Electronics Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798, Singapore.
*
Corresponding author: D. Baillargeat Email: [email protected]

Abstract

Carbon nanotubes (CNTs) are a unique group of materials with high aspect ratio, mechanical and electrical properties, which are of great interests in the field of interconnects, and radio frequency applications. In order to incorporate CNTs into any of these applications successfully, one important issue that has to be resolved is the critical parameters (temperature and reactant gases) associated with the growth of the CNTs. As such, the effect of these growth requirements on the adjacent components should be studied. In this work, we examined specifically the effect of carbon nanotubes growth on the underlying metallization, in particular gold, dedicated for radio-frequency-based applications. The gold coplanar lines were annealed at 800°C in a plasma-enhanced chemical vapor deposition (PECVD) system to simulate the worst-case condition. The reflection and transmission parameters were analyzed using a probe station connected to a vector network analyzer. Carbon nanotubes grown on different barrier layers were also characterized using a scanning electron microscope and Raman spectroscopy to identify a suitable barrier layer for gold. Our results showed that it is promising to integrate carbon nanotubes grown using PECVD onto Au coplanar waveguide without degrading the S-parameters measurements up to 20 GHz.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Tsai, T.Y.; Lee, C.Y.; Tai, N.H.; Tuan, W.H.: Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices. Appl. Phys. Lett., 95 (2009), 013107–013103. doi: 10.1063/1.3167775Google Scholar
[2]Stevens, R.M.; Nguyen, C.V.; Meyyappan, M.: Carbon nanotube scanning probe for imaging in aqueous environment. IEEE Trans.00 NanoBiosci., 3 (2004), 5660. doi: 10.1109/TNB.2004.824275CrossRefGoogle ScholarPubMed
[3]Yung, K.P.; Wei, J.; Tay, B.K.: Formation and assembly of carbon nanotube bumps for interconnection applications. Diamond Relat. Mater., 18 (2009), 11091113. doi: 10.1016/j.diamond.2009.02.022CrossRefGoogle Scholar
[4]Kordas, K. et al. : Chip cooling with integrated carbon nanotube microfin architectures. Appl. Phys. Lett., 90 (2007), 123105–123103. doi: 10.1063/1.2714281Google Scholar
[5]Hermann, S.; Pahl, B.; Ecke, R.; Schulz, S.E.; Gessner, T.: Carbon nanotubes for nanoscale low temperature flip chip connections. Microelectron. Eng., 87 (2010), 438442. doi: 10.1016/j.mee.2009.05.027Google Scholar
[6]Shuba, M.V.; Slepyan, G.Y.; Maksimenko, S.A.; Thomsen, C.; Lakhtakia, A.: Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys. Rev. B, 79 (2009), 155403. doi: 10.1103/PhysRevB.79.155403Google Scholar
[7]Lee, C.Y.; Tsai, H.M.; Chuang, H.J.; Li, S.Y.; Lin, P.; Tseng, T.Y.: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J. Electrochem. Soc., 152 (2005), A716A720. doi: 10.1149/1.1870793Google Scholar
[8]Wei, B.Q.; Vajtai, R.; Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett., 79 (2001), 11721174. doi: 10.1063/1.1396632Google Scholar
[9]Dijon, J.; Fournier, A.; Szkutnik, P.D.; Okuno, H.; Jayet, C.; Fayolle, M.: Carbon nanotubes for interconnects in future integrated circuits: The challenge of the density. Diamond Relat. Mater., 19 (2010), 382388. doi: 10.1016/j.diamond.2009.11.017CrossRefGoogle Scholar
[10]Li, J. et al. : Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett., 82 (2003), 24912493. doi: 10.1063/1.1566791Google Scholar
[11]Kumar, A.; Pushparaj, V.L.; Kar, S.; Nalamasu, O.; Ajayan, P.M.; Baskaran, R.: Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl. Phys. Lett., 89 (2006), 163120163123. doi: 10.1063/1.2356899Google Scholar
[12]Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1 (2002), 129144. doi: 10.1109/TNANO.2002.806823CrossRefGoogle Scholar
[13]Burke, P.J.: Corrections to “An RF Circuit Model for Carbon Nanotubes”. IEEE Trans. Nanotechnol., 3 (2004), 331331. doi: 10.1109/TNANO.2004.828578Google Scholar
[14]Burke, P.J.: AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid-State Electron., 48 (2004), 19811986. doi: 10.1016/j.sse.2004.05.044Google Scholar
[15]Burke, P.J.; Rutherglen, C.; Yu, Z.: Single-walled carbon nanotubes: applications in high frequency electronics. Int. J. High Speed Electron. Syst., 16 (2006), 977999Google Scholar
[16]Burke, P.J.: An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol., 2 (2003), 5558. doi: 10.1109/TNANO.2003.808503Google Scholar
[17]Plombon, J.J.; O'Brien, K.P.; Gstrein, F.; Dubin, V.M.; Jiao, Y.: High-frequency electrical properties of individual and bundled carbon nanotubes. Appl. Phys. Lett., 90 (2007), 063106–063103Google Scholar
[18]Yu, Z.; Burke, P.J.: Microwave transport in metallic single-walled carbon nanotubes. Nano Lett., 5 (2005), 14031406. doi: 10.1021/nl050738kCrossRefGoogle ScholarPubMed
[19]Zhang, M.; Huo, X.; Chan, P.C.H.; Liang, Q.; Tang, Z.K.: Radio-frequency characterization for the single-walled carbon nanotubes. Appl. Phys. Lett., 88 (2006), 163109–163103.Google Scholar
[20]Close, G.F.; Yasuda, S.; Paul, B.; Fujita, S.; Wong, H.S.P.: A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. Nano Lett., 8 (2008), 706709. doi: 10.1021/nl0730965Google Scholar
[21]Nessim, G.D. et al. : Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock. Nano Lett., 9 (2009), 33983405. doi: 10.1021/nl900675dCrossRefGoogle ScholarPubMed
[22]Wang, B. et al. : Controllable preparation of patterns of aligned carbon nanotubes on metals and metal-coated silicon substrates. J. Mater. Chem., 13 (2003), 11241126. doi: 10.1039/b301061aCrossRefGoogle Scholar
[23]Yung, K.P.; Wei, J.; Wang, Z.F.; Tay, B.K.: Effects of under CNT metallization layers on carbon nanotubes growth. Mod. Phys. Lett. B, 22 (2008), 18271836.Google Scholar
[24]García-Céspedes, J. et al. : Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates. Carbon, 47 (2009), 613621. doi: 10.1016/j.carbon.2008.10.045CrossRefGoogle Scholar
[25]Bertrand, N.; Drevillon, B.; Gheorghiu, A.; Senemaud, C.; Martinu, L.; Klemberg-Sapieha, J.E.: Adhesion improvement of plasma-deposited silica thin films on stainless steel substrate studied by x-ray photoemission spectroscopy and in situ infrared ellipsometry. J. Vacuum Sci. Technol. A: Vacuum Surf. Films, 16 (1998), 612. doi: 10.1116/1.581013Google Scholar
[26]De Los Santos, V.L. et al. : Crystallization and surface morphology of Au/SiO2 thin films following furnace and flame annealing. Surf. Sci., 603 (2009), 29782985. doi: 10.1016/j.susc.2009.08.011Google Scholar
[27]Wißmann, P.; Finzel, H.-U.: The effect of annealing on the electrical resistivity of thin gold films. Springer Tracts Mod. Phys., 223 (2007), 3552. doi: 10.1007/3–540–48490-6_4Google Scholar
[28]Basa, D.: Plasma treatment studies of MIS devices. Central Eur. J. Phys., 8 (2010), 400407. doi: 10.2478/s11534-009-0095-8Google Scholar
[29]von Arnim, V.L.; Fessmann, J.; Psotta, L.: Plasma treatment of thin gold surfaces for wire bond applications. Surf. Coatings Technol., 116–119 (1999), 517523. doi: 10.1016/S0257-8972(99)00105-XCrossRefGoogle Scholar
[30]Cao, A.; Zhang, X.; Xu, C.; Liang, J.; Wu, D.; Wei, B.: Synthesis of well-aligned carbon nanotube network on a gold-patterned quartz substrate. Appl. Surf. Sci., 181 (2001), 234238. doi: 0.1016/S0169-4332(01)00396-8Google Scholar
[31]Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y.: Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett., 6 (2006), 26422645. doi: 10.1021/nl061797 gGoogle Scholar
[32]Bhaviripudi, S. et al. : CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc., 129 (2007), 15161517. doi: 10.1021/ja0673332Google Scholar
[33]Zhang, Y.; Li, R.; Liu, H.; Sun, X.; Mérel, P.; Désilets, S.: Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water. Appl. Surf. Sci., 255 (2009), 50035008. doi: 10.1016/j.apsusc.2008.12.053CrossRefGoogle Scholar
[34]Dresselhausa, M.S.; Dresselhausb, G.; Saitoc, R.; Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep., 409 (2004), 4799. doi: 10.1016/j.physrep.2004.10.006Google Scholar
[35]Sun, X. et al. : The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures. Nanotechnology, 21 (2010), 045201. doi: 10.1088/0957-4484/21/4/045201CrossRefGoogle ScholarPubMed
[36]Nessim, G.D.; Acquaviva, D.; Seita, M.; O'Brien, K.P.; Thompson, C.V.: The critical role of the underlayer material and thickness in growing vertically aligned carbon nanotubes and nanofibers on metallic substrates by chemical vapor deposition. Adv. Funct. Mater., 20 (2010), 13061312. doi: 10.1002/adfm.200902265CrossRefGoogle Scholar