Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T07:48:54.752Z Has data issue: false hasContentIssue false

Hybrid antenna design for an optically powered SHF RFID transponder applicable in metals

Published online by Cambridge University Press:  04 June 2013

Johannes Meyer*
Affiliation:
Institut für Hochfrequenztechnik und Funksysteme, Leibniz Universität Hannover, Appelstraße 9a, 30167 Hannover, Germany. Phone: +49-511-762-5264
Stefan Franke
Affiliation:
Institut für Transport- und Automatisierungstechnik, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany
Bernd Geck
Affiliation:
Institut für Hochfrequenztechnik und Funksysteme, Leibniz Universität Hannover, Appelstraße 9a, 30167 Hannover, Germany. Phone: +49-511-762-5264
Ludger Overmeyer
Affiliation:
Institut für Transport- und Automatisierungstechnik, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany
*
Corresponding author: Johannes Meyer Email: [email protected]

Abstract

This paper presents a hybrid antenna design for an optically powered super high frequency (SHF) radio frequency identification transponder applicable for the integration into metal. The key feature of the antenna is its ability to receive microwave signals at SHF for data communication and optical signals for the power supply of the transponder. The antenna design is based on a circular waveguide which is filled with a bundle of polymer optical fibers to guide light to the photodiodes. In addition, a transition is placed within the circular waveguide to transfer the waveguide mode of the SHF signal into a microstrip mode which is a more suitable structure for the integration of electronic transponder components. This paper discusses the constraints and solutions for the aforementioned combination of SHF microwave and light. The figures of merit of the optical power supply are presented, including considerations of the light distribution and the obtained power as a function of the incident angle and the used polymer optical fiber diameter. Furthermore, the measured gain and return loss of the SHF antenna structure is compared to the simulated results.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ladan, S.; Ghassemi, N.; Ghiotto, A.; Wu, K.: High efficient compact rectenna for wireless energy harvesting application. IEEE Microw. Mag., 14 (1) (2013), 117122.CrossRefGoogle Scholar
[2]Roo-Ons, M.; Shynu, S.; Ammann, M.; McCormack, S.; Norton, B.: Transparent patch antenna on a-si thin-film glass solar module. Electron. Lett., 47 (2011), 8586.Google Scholar
[3]Vaccaro, S.; Mosig, J.; de Maagt, P.: Two advanced solar antenna “solant” designs for satellite and terrestrial communications. IEEE Trans. Antennas Propag., 51 (2003), 20282034.Google Scholar
[4]Peña, R.; Algora, C.; Matías, I.R.; López-Amo, M.: Fiber-based 205 mW (27% efficiency) power-delivery system for an all-fiber network with optoelectronic sensor units. Appl. Opt., 38 (1999), 24632466.CrossRefGoogle ScholarPubMed
[5]Nakajima, N.; Yokota, N.: Cellular/wireless lan repeater system by wireless optical link with optical power supply. WTOC, 7 (2008), 882891.Google Scholar
[6]Ziemann, O.; Krauser, J.; Zamzow, P.E.; Daum, W.: Optische fasern. In POF-Handbuch: Optische Kurzstrecken-Übertragungssysteme, Springer, 2007, 122123.Google Scholar
[7]Gupta, K.; Garg, R.; Bahl, I.; Bhartia, P.: Finlines, in Microstrip Lines and Slotlines, 2nd ed., Artech House, Inc, Norwood, 1996, 341368.Google Scholar
[8]Orlob, C.; Kornek, D.; Preihs, S.; Rolfes, I.: Characterization of electromagnetic properties of molded interconnect device materials, in German Microwave Conference, Munich, Germany, 2009, 1–4.Google Scholar
[9]Southwest Microwave: End Launch Connector Series, Datasheet.Google Scholar
[10]Djerafi, T.; Ghiotto, A.; Wu, K.: Antipodal fin-line waveguide to substrate integrated waveguide transition, in Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, 2012, 1, 3.CrossRefGoogle Scholar
[11]Chen, L.F.; Ong, C.K.; Neo, C.P.; Varadan, V.V.; Varadan, V.K.: Transmission/Reflection Methods. In Microwave Electronics: Measurement and Materials Characterization, Wiley, Chichester, 2004, 192195.Google Scholar