Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T05:16:23.306Z Has data issue: false hasContentIssue false

A high-power solid state amplifier for Galileo satellite system exploiting European GaN technology

Published online by Cambridge University Press:  08 March 2016

Rocco Giofré*
Affiliation:
E. E. Department, University of Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italy. Phone: +39 06 7259 7346
Paolo Colantonio
Affiliation:
E. E. Department, University of Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italy. Phone: +39 06 7259 7346
Elisa Cipriani
Affiliation:
E. E. Department, University of Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italy. Phone: +39 06 7259 7346
Franco Giannini
Affiliation:
E. E. Department, University of Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italy. Phone: +39 06 7259 7346
Laura Gonzalez
Affiliation:
TTI Norte, Parque Científico y Tecn. de Cantabria, C/Albert Einstein 14, 39011 Santander, Spain
Francisco De Arriba
Affiliation:
TTI Norte, Parque Científico y Tecn. de Cantabria, C/Albert Einstein 14, 39011 Santander, Spain
Lorena Cabria
Affiliation:
TTI Norte, Parque Científico y Tecn. de Cantabria, C/Albert Einstein 14, 39011 Santander, Spain
*
Corresponding author:R. Giofré Email: [email protected]

Abstract

This paper describes the development of an L-Band (f0 = 1.575 GHz) high power and efficient solid state power amplifier (SSPA) designed for the European satellite navigation system (i.e. Galileo). The amplifier, developed in the framework of the European Project named SLOGAN, exploits the GH50-10 GaN technology available at United Monolithic Semiconductor foundry. The aim of the project is to offer, using as much as possible European technologies, a valid alternative to replace traveling wave tube amplifiers with more compact and reliable systems. All the SSPA functionalities, i.e. power supply, power conditioning and radio frequency amplification, are integrated in the developed architecture and accommodated in a single box with limited volume and mass. The required output power level is achieved by parallelizing several GaN die power bars of 12 and/or 25.6 mm. In continuous wave operating mode, the overall SSPA delivers an output power higher than 250 W at less than 2 dB of gain compression in the whole E1-band. Moreover, the registered gain and efficiency are higher than 67 dB and 54%, respectively.

Type
Industrial and Engineering Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ayllon, N.: Microwave high power amplifier technologies for space-borne applications, in 2015 IEEE 16th Annual Wireless and Microwave Technology Conf. (WAMICON), April 2015, 14.CrossRefGoogle Scholar
[2] Chong, C.; Menninger, W.: Latest advancements in high-power millimeter-wave helix TWTs. IEEE Trans. Plasma Sci., 38 (6) (2010), 12271238.CrossRefGoogle Scholar
[3] C. Inc.: Cghv40320d datasheet, 2014. [Online]. Available: http://www.cree.com Google Scholar
[4] Cipriani, E. et al. : A highly efficient octave bandwidth high power amplifier in GaN technology, in 2011 European Microwave Integrated Circuits Conf. (EuMIC), October 2011, 188191.Google Scholar
[5] SLOGAN. Space Qualification of High-Power SSPA based on GaN Technology, 2013. [Online]. Available: http://www.fp7-slogan.eu/ Google Scholar
[6] Giofré, R.; Colantonio, P.; Gonzalez, L.; De Arriba, F.; Cabria, L.; Baglieri, D.: A first step towards a 230 W SSPA for Galileo system exploiting European GaN technology, in European Microwave Integrated Circuit Conf. (EuMiC), September 2015, 4 CrossRefGoogle Scholar
[7] Karvonen, A.; Thiringer, T.: Simulating the emi characteristics of yback dc/dc converters, in 2011 IEEE 33rd Int. Telecommunications Energy Conf. (INTELEC), October 2011, 17.CrossRefGoogle Scholar
[8] Giofré, R.; Colantonio, P.; Gonzalez, L.; De Arriba, F.; Cabria, L.; Baglieri, D.: Evaluation of GaN technology for Galileo Satellite System, in Int. Symp. on Microwave and Optical Technologies, 2014, 4.Google Scholar
[9] Giofré, R.; Colantonio, P.; Gonzalez, L.; De Arriba, F.; C. L.; Baglieri, D.: A GaN high power and efficient amplifier for L-Band Galileo system, in Int. Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), October 2015, 4.CrossRefGoogle Scholar
[10] Colantonio, P.; Giannini, F.; Giofré, R.; Piazzon, L.: Evaluation of GaN technology in power amplifier design. Microw. Opt. Technol. Lett., 51 (1) (2009), 4244. [Online]. Available: http://dx.doi.org/10.1002/mop.23958 CrossRefGoogle Scholar
[11] Ehret, P.; Vogt, H.; Peters, A.; Bosch, E.: L-band TWTAs for navigation satellites. IEEE Trans. Electron Devices, 52 (5) (2005), 679684.CrossRefGoogle Scholar
[12] Wojtasiak, W.; Gryglewski, D.; Sedek, E.: The 100 W class a power amplifier for L-band T/R module, in 13th Int. Conf. on microwaves, radar and wireless communications, 2000. MIKON-2000, vol. 2, 2000, 675677.Google Scholar
[13] Rochette, S. et al. : A high efficiency 140 W power amplifier based on a single GaN HEMT device for space applications in L-band, in 2012 7th European Microwave Integrated Circuits Conf. (EuMIC), October 2012, 127130.Google Scholar
[14] Maekawa, A.; Yamamoto, T.; Mitani, E.; Sano, S.: A 500 W push-pull AlGaN/GaN HEMT amplifier for L-band high power application, in 2006. IEEE MTT-S Int. Microwave Symp. Digest, June 2006, 722725.CrossRefGoogle Scholar
[15] Kim, K.-W.; Kwack, J.-Y.; Cho, S.: 1 kW solid state power amplifier for L-band radar system, in 2011 3rd Int. Asia-Pacific Conf. on Synthetic Aperture Radar (APSAR), September 2011, 14.Google Scholar