Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T19:22:52.485Z Has data issue: false hasContentIssue false

High-performance 60 GHz MMICs for wireless digital communication in 100 nm mHEMT technology

Published online by Cambridge University Press:  03 March 2011

Daniel Lopez-Diaz*
Affiliation:
Fraunhofer Institute for Applied Solid State Physics IAF, Tullastrasse 72, 79108 Freiburg, Germany.
Ingmar Kallfass
Affiliation:
Fraunhofer Institute for Applied Solid State Physics IAF, Tullastrasse 72, 79108 Freiburg, Germany. Karlsruhe Institute of Technology, Institut für Hochfrequenztechnik und Elektronik, 76131 Karlsruhe, Germany.
Axel Tessmann
Affiliation:
Fraunhofer Institute for Applied Solid State Physics IAF, Tullastrasse 72, 79108 Freiburg, Germany.
Rainer Weber
Affiliation:
Fraunhofer Institute for Applied Solid State Physics IAF, Tullastrasse 72, 79108 Freiburg, Germany.
Hermann Massler
Affiliation:
Fraunhofer Institute for Applied Solid State Physics IAF, Tullastrasse 72, 79108 Freiburg, Germany.
Arnulf Leuther
Affiliation:
Fraunhofer Institute for Applied Solid State Physics IAF, Tullastrasse 72, 79108 Freiburg, Germany.
Michael Schlechtweg
Affiliation:
Fraunhofer Institute for Applied Solid State Physics IAF, Tullastrasse 72, 79108 Freiburg, Germany.
Oliver Ambacher
Affiliation:
Fraunhofer Institute for Applied Solid State Physics IAF, Tullastrasse 72, 79108 Freiburg, Germany.
*
Corresponding author: D. Lopez-Diaz Email: [email protected]

Abstract

Wireless data communication is pushing towards 60 GHz and will most likely be served by SiGe and Complementary Metal Oxide Semiconductor (CMOS) technologies in the consumer market. Nevertheless, some applications are imposing superior performance requirements on the analog frontend, and employing III-V compound semiconductors can provide significant advantages with respect to transmitter power and noise figure. In this paper, we present essential building blocks and a novel single-chip low complexity transceiver Monolithic Microwave Integrated Circuit (MMIC) with integrated antenna switches for 60 GHz communication, fabricated in a 100 nm metamorphic high electron mobility transistor (mHEMT) technology. This technology features a measured noise figure of <2.5 dB in low-noise amplifiers at 60 GHz and the realized medium power amplifiers achieve more than 20 dBm saturated output power. Integrated antenna switches with an insertion loss of less than 1.5 dB enable the integration of the transmit and the receive stages on a single chip. A single-chip transceiver with external subharmonic Local Oscillator (LO) supply for its I/Q down- and up-converter achieves a linear conversion gain in both, the Transmit (Tx) and the Receive (Rx) paths, of more than 10 dB.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Floyd, B.A.; Reynolds, S.K.; Pfeiffer, U.R.; Zwick, T.; Beukema, T.; Gaucher, B.: “SiGe bipolar transceiver circuits operating at 60 GHz”, IEEE Journal of Solid-State Circuits, vol. 40, no. 1, 156167, Jan. 2005.CrossRefGoogle Scholar
[2]Kwanhim, L. et al. : Wideband millimeter wave PIN diode SPDT switch using IBM 0.13 µm SiGe technology, in European Microwave Integrated Circuit Conf., 2007. EuMIC 2007, 8–10 October 2007, 108111.Google Scholar
[3]Cohen, E.; Ravid, S.; Ritter, D.: An ultra low power LNA with 15 dB gain and 4.4 dB NF in 90 nm CMOS process for 60 GHz phase array radio, in Radio Frequency Integrated Circuits Symp., 2008. RFIC 2008. IEEE, June 17, 2008–April 17 2008, 6164.CrossRefGoogle Scholar
[4]Law, C.Y.; Pham, A.-V.: A high-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS, in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), 2010, 7–11 February 2010, 426427.CrossRefGoogle Scholar
[5]Uzunkol, M.; Rebeiz, G.M.: A low-loss 50–70 GHz SPDT switch in 90 nm CMOS. IEEE J. Solid-State Circuits, 45 (10) (2010), 20032007.CrossRefGoogle Scholar
[6]Leuther, A. et al. : 50 nm MHEMT technology for G- and H-band MMICs, in IEEE 19th Int. Conf. on Indium Phosphide & Related Materials, 2007. IPRM ‘07, 14–18 May 2007, 2427.CrossRefGoogle Scholar
[7]Tessmann, A.; Kallfass, I.; Leuther, A.; Massler, H.; Schlechtweg, M.; Ambacher, O.: Metamorphic MMICs for operation beyond 200 GHz, in European Microwave Integrated Circuit Conf., 2008. EuMIC 2008, 27–28 October 2008, 210213.CrossRefGoogle Scholar
[8]Yaoming, S.; Herzel, F.; Borngraber, J.; Kraemer, R.: 60 GHz receiver building blocks in SiGe BiCMOS, in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2007, 10–12 January 2007, 219222.Google Scholar
[9]Van-Hoang, D.; Subramanian, V.; Boeck, G.: 60 GHz SiGe LNA, in 14th IEEE Int. Conf. on Electronics, Circuits and Systems, 2007. ICECS 2007, 11–14 December 2007, 12091212.CrossRefGoogle Scholar
[10]Kallfass, I.; Diebold, S.; Massler, H.; Koch, S.; Seelmann-Eggebert, M.; Leuther, A.: Multiple-throw millimeter-wave FET switches for frequencies from 60 up to 120 GHz, in Proc. 38th European Microwave Conf., Amsterdam, October 2008, 14531456.CrossRefGoogle Scholar
[11]Koch, S.; Kallfass, I.; Leuther, A.; Schlechtweg, M.; Saito, S.; Uno, M.: A four-antenna transceiver MIMIC for 60 GHz wireless multimedia applications, in Proc. 38th European Microwave Conf., Amsterdam, October 2008, 15291532.CrossRefGoogle Scholar
[12]Koch, S.; Kallfass, I.; Weber, R.; Leuther, A.; Schlechtweg, M.; Saito, S.: A fully integrated, compound transceiver MIMIC utilizing six antenna ports for 60 GHz wireless applications, in Proc. IEEE Compound Semiconductor Integrated Circuit Symp. CSICS, 2009.CrossRefGoogle Scholar