Published online by Cambridge University Press: 27 April 2023
A miniaturized and flexible frequency-selective surface (FSS) has been presented in this article with a unit cell size of 0.049 λc × 0.049 λc where λc is the free space wavelength at the lower cut-off frequency. In order to achieve an ultra-wide (−3 dB) second order pass band of 151.3% with enhanced selectivity factor of 0.887, a cascaded triple layered hybrid resonating structure has been proposed with symmetrical Minkowski island-shaped fractal geometry pair and spiral-shaped middle layer in optimized air gap coupling. Furthermore, 149.8% ultra-wide pass band also ascertains the conformal feature of the proposed structure. In addition to this, the proposed FSS provides the stable angular response for both TE and TM polarization. An equivalent circuit model has been synthesized for accurate frequency response. Finally, a sample prototype has been fabricated to verify the experimental validation. Excellent angular stability under large oblique incident and significant conformal characteristics ensure the compatibility of the proposed structure for electromagnetic stealth in 0.9–1.8 GHz GSM band, 2.10–2.14 GHz wireless medical telemetry band, 2.4–2.5 and 4.9–5.8 GHz WLAN band, 3.4–3.7 and 4.4–4.9 GHz sub-6 GHz 5 G band, and 3.7–4.2 GHz C band.