Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T08:35:47.192Z Has data issue: false hasContentIssue false

Double-walled carbon nanotube-based polymer composites for electromagnetic protection

Published online by Cambridge University Press:  25 November 2010

Sébastien Pacchini*
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
David Dubuc
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
Emmanuel Flahaut
Affiliation:
Université de Toulouse; UPS, INP; Institut Carnot Cirimat; 118, route de Narbonne, F-31062 Toulouse Cedex 9, France. CNRS; Institut Carnot Cirimat; F-31062 Toulouse, France.
Katia Grenier
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
*
Corresponding author: S. Pacchini Email: [email protected]

Abstract

In this paper, we present a microwave absorber based on carbon nanotubes (CNT) dispersed inside a BenzoCycloButen® (BCB) polymer. The high aspect ratio and remarkable conductive characteristics of CNT give rise to good absorbing properties for electromagnetic protecting in microelectronic devices with very low concentration. In this article, nanocomposites are prepared using a solution-mixing method and are then evaluated and modeled by means of coplanar test structures. First, CNT concentrations are quantified by image processing. The nanocomposites implemented with coplanar test waveguides are then characterized using a vector network analyzer from 40 MHz to 20 GHz. An algorithm is developed to calculate the propagation constant “γ”, attenuation constant “α”, and relative effective complex permittivity (ɛreff = ɛreff′ − jɛreff″) for each CNT concentration. The extracted effective parameters are verified using the electromagnetic FEM-based Ansoft's® high frequency structure simulator (HFSS). Power absorption (PA) of 7 dB at 15 GHz is obtained with only 0.37 weight percent of CNT concentration in the polymer matrix. The resulting engineerable and controllable composite provides consequently a novel degree of freedom to design and optimize innovative microwave components.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Overney, G.; Zhong, W.; Tomanek, D.: Structural rigidity and low frequency vibrational modes of long carbon tubules. Z. Phys. D, At. Mol. Clusters, 27 (1) (1993), 9396.Google Scholar
[2]Che, J.; Çagin, T.; Goddard, W.A.: Thermal conductivity of carbon nanotubes. Nanotechnology, 11 (2000), 6569.CrossRefGoogle Scholar
[3]Yao, Z.; Postma, H.W.C.; Balents, L.; Dekker, C.: Carbon nanotube intramolecular junctions. Lett. Nat., 402 (1999), 273276.CrossRefGoogle Scholar
[4]Laha, T.; Agarwal, A.; McKechnie, T.; Seal, S.: Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminium composite. Mater. Sci. Eng. A, 381 (1–2) (2004), 249258.CrossRefGoogle Scholar
[5]Flahaut, E.; Peigney, A.; Laurent, Ch.; Marlière, Ch.; Chastel, F.; Rousset, A.: Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater., 48 (14) (2000), 38033812.CrossRefGoogle Scholar
[6]Barrau, S.; Demont, P.; Perez, E.; Peigney, A.; Laurent, C.; Lacabanne, C.: Effect of palmitic acid on the electrical conductivity of carbon nanotubes epoxy resin composite. Macromolecules, 36 (2003), 96789680.Google Scholar
[7]Rul, S.; Lefevre-Schlick, F.; Capria, E.; Laurent, Ch.; Peigney, A.: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater., 52 (4) (2004), 10611067.CrossRefGoogle Scholar
[8]Cai, D.; Song, M.: Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite. Carbon, 46 (15) (2008), 21072112.CrossRefGoogle Scholar
[9]Sandler, J.K.W.; Kirk, J.E.; Kinlocj, I.A.; Shaffer, M.S.P.; Windle, A.H.: Ultra low electrical percolation threshold in carbon nanotube epoxy composite. Polymer, 44 (19) (2003), 58935899.CrossRefGoogle Scholar
[10]Bordas, C. et al. : Carbon nanotube based dielectric for enhanced RF MEMS reliability, in IEEE/MTT-S Int. Microwave Symp., 2007, 375378.CrossRefGoogle Scholar
[11]Said, A.; Bednarz, L.; Daussin, R.; Bailly, C.; Xudonng, Lu: Carbon nanotube composites for broadband microwave absorbing materials, microwave theory and techniques. IEEE Trans., 54 (6) (2006), 27452754.Google Scholar
[12]Park, K-Y.; Lee, S-E.; Kim, C-G.; Han, J-H.: Application of MWNT-added glass fabric/epoxy composites to electromagnetic wave shielding enclosure. Compos. Struct., 81 (2007), 401406.CrossRefGoogle Scholar
[13]Chemical®, Dow, Midland, Mi, http://www.dow.comGoogle Scholar
[14]Grenier, K. et al. : Polymer based technologies for microwave and millimeterwave applications, in IEEE Int. Electron Devices Meeting, IEDM Technical Digest, 2004, 545548.CrossRefGoogle Scholar
[15]Pacchini, S.; Idda, T.; Dubuc, D.; Flahaut, E.; Grenier, K.: Carbon nanotube-based polymer composite for microwave applications, in IEEE MTT-S Int. Microwave Symp. Digest, 2008, 101104.Google Scholar
[16]Flahaut, E.; Bacsa, R.; Peigney, A.; Laurent, Ch.: Gram-scale CCVD synthesis of double-walled carbon nanotube. Chem. Commun., (2003), 14421443.CrossRefGoogle Scholar
[17]Flahaut, E.; Peigney, A.; Laurent, Ch.; Rousset, A.: Synthesis of singles-walled carbon nanotube-Co-MMgO composite powders and extraction of the nanotubes. J. Mater. Chem., 10 (2000), 249.CrossRefGoogle Scholar
[18]Vergne, B.: Mise en forme de composite Nanotubes de Carbone/Alumine et modélisation de leur conductivité thermique, Thesis of university of Limoges, 2007.Google Scholar
[19]Peigney, A.; Laurent, Ch.; Flahaut, E.; Bacsa, R.R.; Rousset, A.: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39 (4) (2001), 507514.CrossRefGoogle Scholar
[20]Bianco, B.; Parodi, M.: Determination of the propagation constant of uniform microstrip lines. Alta Freq., 45 (2) (1976), 107111.Google Scholar
[21]Stauffer, D.; Aharony, A.: Introduction to Percolation Theory, Taylor and Francis, London, 1994.Google Scholar
[22]Barrau, S.; Demont, P.; Peigney, A.; Laurent, C.; Lacabanne, C.: DC and AC conductivity nanotubes – polyepoxy composites. Macromolecules, 36 (2003), 51875194.CrossRefGoogle Scholar
[23]Qiao, Y.J.; Cao, M.; Zhang, L.: Investigation on potential microwave absorbability of polyester composite filled with carbon nanotubes, in Conf. on Nano/Micro Engineering and Molecular Systems, 2006.CrossRefGoogle Scholar