Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T03:20:39.670Z Has data issue: false hasContentIssue false

Design and characterization of a foam-based Mikaelian lens antennas in millimeter waves

Published online by Cambridge University Press:  30 July 2014

Jonathan Bor*
Affiliation:
Complex Radiating Systems, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, Rennes Cedex 35042, France
Benjamin Fuchs
Affiliation:
Complex Radiating Systems, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, Rennes Cedex 35042, France
Olivier Lafond
Affiliation:
Complex Radiating Systems, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, Rennes Cedex 35042, France
Mohamed Himdi
Affiliation:
Complex Radiating Systems, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, Rennes Cedex 35042, France
*
Corresponding author: J. Bor Email: [email protected]

Abstract

The design principles and radiation performances of Mikaelian lens antennas are presented. The ways to manufacture gradient index lenses are briefly reviewed. An innovative technique based on the variation of the foam density is described and applied to the Mikaelian lenses. This yields low cost and lightweight gradient index lenses. The focusing properties of Mikaelian lenses are compared numerically to Luneburg lenses. A foam-based planar Mikaelian lens antenna is manufactured and its radiation performances are characterized at 60 GHz. With its flat shape in contact to the primary source, the cylindrical Mikaelian lens turns out to be, for focusing purposes, an interesting alternative to the well-known Luneburg lens.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Mosallaei, H.; Rahmat-Samii, Y.: Nonuniform Luneburg and 2-shell lens antennas: radiation characteristics and design optimization. IEEE Trans. Antennas Propag., 49 (1) (2001), 6069.CrossRefGoogle Scholar
[2]Park, Y.-J.; Wiesbeck, W.: Offset cylindrical reflector antenna fed by a parallel-plate Luneburg lens for automotive radar applications in millimeter-wave. IEEE Trans. Antennas Propag., 51 (9) (2003), 24812483.Google Scholar
[3]Fuchs, B.; Lafond, O.; Rondineau, S.; Himdi, M.: Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves. IEEE Trans. Microw. Theory Tech., 54 (6) (2006), 22922300.Google Scholar
[4]Mikaelian, A.L.: Application of laminated media for wave focusing. J. Dokl. Akad. Nauk, LXXXI (4) (1951).Google Scholar
[5]Mikaelian, A.L.: Self focusing media with variable index of refraction, in E. Wolf, Progress in optics XVII, North Holland, 1980.Google Scholar
[6]Merlet, H.; Le Bars, P.; Lafond, O.; Himdi, M.: Manufacturing method of a dielectric material and its application to millimeter-waves beam forming antenna systems. Patent WO2013083794, June 2013.Google Scholar
[7]Bor, J.; Lafond, O.; Merlet, H.; Le Bars, P.; Himdi, M.: Technological process to control the foam dielectric constant – applications to microwave components and antennas. IEEE Trans. Compon. Packag. Manuf. Technol., 4 (5) (2014), 938942.Google Scholar
[8]Bor, J.; Lafond, O.; Merlet, H.; Le Bars, P.; Himdi, M.: Foam based Luneburg lens antenna at 60 GHz. Progr. Electromagn. Res. B, 44 (2014), 17.CrossRefGoogle Scholar
[9]Lo, Y.T.; Lee, S.W.: Antenna Handbook: Antenna Theory, vol. II, chapter 16, Van Nostrand Reinhold, New York, 1993, 53.Google Scholar
[10]Jasik, H.: Antenna Engineering Handbook, chapter 15, McGraw-Hill, New York, 1961, 1819.Google Scholar
[11]Goatley, C.; Parker, C.F.: Symmetrical microwave lenses. IRE, 3 (1955), 1319.Google Scholar
[12]Peeler, G.D.M.; Coleman, H.P.: Microwave stepped-index Luneburg lenses. IRE Trans. Antennas Propag., 6 (2) (1958), 202207.Google Scholar
[13]Peeler, G.D.M.; Archer, D.: A two-dimensional microwave Luneberg lens. IRE Trans. Antennas Propag., 1 (1) (1953), 1223.Google Scholar
[14]Rondineau, S.; Himdi, M.; Sorieux, J.: A sliced spherical Luneburg lens. IEEE Antennas Wirel. Propag. Lett., 2 (2003), 163166.CrossRefGoogle Scholar
[15]Xue, L.; Fusco, V.F.: Printed holey plate Luneburg lens. Microw. Opt. Technol. Lett., 50 (2) (2007), 378380.CrossRefGoogle Scholar
[16]Pfeiffer, C.; Grbic, A.: A printed, broadband Luneburg lens antenna. IEEE Trans. Antennas Propag., 8 (9) (2010), 30553059.Google Scholar
[17]Bosiljevac, M.; Casaletti, M.; Caminita, F.; Sipus, Z.; Maci, S.: Non-uniform metasurface Luneburg lens antenna design. IEEE Trans. Antennas Propag., 60 (9) (2012), 40654073.Google Scholar