Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T07:51:50.404Z Has data issue: false hasContentIssue false

DC and radio-frequency transmission characteristics of double-walled carbon nanotubes-based ink

Published online by Cambridge University Press:  25 November 2010

Sébastien Pacchini*
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
Emmanuel Flahaut
Affiliation:
Université de Toulouse; UPS, INP; Institut Carnot Cirimat; 118, route de Narbonne, F-31062 Toulouse Cedex 9, France. CNRS; Institut Carnot Cirimat; F-31062 Toulouse, France.
Norbert Fabre
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
Véronique Conédéra
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
Fabien Mesnilgrente
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
Fabio Coccetti
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
Mircea Dragoman
Affiliation:
National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest, Romania.
Robert Plana
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France. Phone: +33 56133 6964. Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France.
*
Corresponding author: Sébastien Pacchini Email: [email protected];

Abstract

In this paper, double-walled carbon nanotubes (DWNTs) network layers were patterned using inkjet transfer printing. The remarkable conductive characteristics of carbon nanotubes (CNTs) are considered as promising candidates for transmission line as well as microelectronic interconnects of an arbitrary pattern. In this work, the DWNTs were prepared by the catalytic chemical vapor deposition process, oxidized and dispersed in ethylene-glycol solution. The DWNTs networks were deposited between electrodes contact and then characterized at DC through current–voltage measurements, low frequency, and high frequency by scattering parameters measurements from 40 MHz up to 40 GHz through a vector network analyzer. By varying the number of inkjet overwrites, the results confirm that the DC resistance of DWNTs networks can be varied according to their number and that furthermore the networks preserve ohmic characteristics up to 100 MHz. The microwave transmission parameters were obtained from the measured S-parameter data. An algorithm is developed to calculate the propagation constant “γ”, attenuation constant “α” in order to show the frequency dependence of the equivalent resistance of DWNTs networks, which decreases with increasing frequency.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Overney, G.; Zhong, W.; Tomanek, D.: Structural rigidity and low frequency vibrational modes of long carbon tubules. Z. Phys. D, At. Mol. Clusters, 27 (1) (1993), 9396.CrossRefGoogle Scholar
[2]Yao, Z.; Postma, H.W.C.; Balents, L.; Dekker, C.: Carbon nanotube intramolecular junctions. Lett. Nat., 402 (1999), 273276.CrossRefGoogle Scholar
[3]Che, J.; çagin, T.; Goddard, W.A.: Thermal conductivity of carbon nanotubes. Nanotechnology, 11 (2000), 6569.CrossRefGoogle Scholar
[4]Flahaut, E.; Peigney, A.; Laurent, Ch.; Marlière, Ch.; Chastel, F.; Rousset, A.: Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater., 48 (14), (2000), 38033812.CrossRefGoogle Scholar
[5]Bordas, C. et al. : Carbon nanotube based dielectric for enhanced RF MEMS reliability, in IEEE/MTT-S Int. Microwave Symp., 2007, 375378.CrossRefGoogle Scholar
[6]Pacchini, S.; Idda, T.; Dubuc, D.; Flahaut, E.; Grenier, K.: Carbon nanotube-based polymer composite for microwave applications, in IEEE MTT-S Int. Microwave Symp. Digest, 2008, 101104.Google Scholar
[7]Yun, Ju-Hyung; Soo, H-C.; Joondong, Jin-Won Song, Shin, Dong-Hum, Park, Y-G.: Fabrication of carbon nanotube sensor device by inkjet printing, in Proc. of Nano/Micro Engineering and Molecular Systems, 2008, 506509.CrossRefGoogle Scholar
[8]Hellstrom, S.L.; Lee, H.W.; Bao, Z.: Polymer assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparents electrodes. ACS Nano, 3 (6) (2009), 14231430.CrossRefGoogle Scholar
[9]Kordas, K. et al. : Inkjet printing of electrically conductive patterns of carbon nanotubes. Small, 2 (8–9) (2006), 10211025.CrossRefGoogle ScholarPubMed
[10]Li, Y.; Rongwei, Z.; Daniela, S.; Wong, C.P.; Manos, T.: A novel conformal rfif-enable module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection application. IEEE Antennas Wirel. Propag. Lett., 8 (2009).Google Scholar
[11]Gaggliardi, S. et al. : Impedance analysis of nanocarbon DSSC electrodes. Superlattice Microstruct., 46 (2009), 205208.CrossRefGoogle Scholar
[12]Seong, C.J. et al. : Radio frequency transmission characteristics of a multi walled carbon nanotube. Nanotechnology, 18 (25), (2007), 6.Google Scholar
[13]Conedera, V.; Yoboue, P.; Mesnilgrente, F.; Fabre, N.; Menini, P.: Manufacturability of gas sensor with ZnO nanoparticle suspension deposited by ink-jet printing. Proc. SPIE Photonics, 7590 (2009), 6.Google Scholar
[14]Conédéra, V.; Mesnilgrente, F.; Brunet, M.; Fabre, N.: Fabrication of carbon activated electrodes by ink-jet deposition, in Proc. 2009 Third Int. Conf. on Quantum, Nano and Micro Technologies, 2009, 157161.Google Scholar
[15]Sheng, P.: Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev., B21 (1980), 21802195.CrossRefGoogle Scholar
[16]Flahaut, E.; Bacsa, R.; Peigney, A.; Laurent, Ch.: Gram-scale CCVD synthesis of double-walled carbon nanotube. Chem. Commun., (2003), 14421443.CrossRefGoogle Scholar
[17]Pacchini, S.: Tunability of carbon nanotube resistance deposited by inkjet printing at low temperature. Material Research Society, 1258 (201) (2010), 6.Google Scholar
[18]Song, J.W.; Kim, J.; Yoon, Y.H.; Choi, B.S.; Han, C.S.: Inkjet printing of single-walled carbon nanotube and electrical characterization of the line pattern. Nanotechnology, 19 (19) (2008), 6.CrossRefGoogle ScholarPubMed
[19]Bianco, B.; Parodi, M.: Determination of the propagation constant of uniform microstrip lines. Alta Freq., 45 (2) (1976), 107111.Google Scholar