Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T11:01:47.984Z Has data issue: false hasContentIssue false

Compact hybrid fractal antenna for wideband wireless applications

Published online by Cambridge University Press:  29 November 2016

Yogesh Kumar Choukiker*
Affiliation:
Department of Communication Engineering, School of Electronics Engineering, VIT University, TN, India
Jagadish Chandra Mudiganti
Affiliation:
Department of Communication Engineering, School of Electronics Engineering, VIT University, TN, India
*
Corresponding author: Y.K. Choukiker Email: [email protected]

Abstract

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground plane. The measured impedance matching fractal bandwidth (S11 ≤ −10 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable agreement is obtained from the simulated and measured antenna performance parameters.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Werner, D.H.; Haupt, R.L.; Werner, P.L.: Fractal antenna engineering: the theory and design of fractal antennas arrays. IEEE Antennas Propag. Mag., 41 (5) (1999), 3759.Google Scholar
[2] Sinha, S.N.; Jain, M.: A self-affine fractal multiband antenna. IEEE Antennas Wireless Propag. Lett., 6 (2007), 110112.Google Scholar
[3] Puente, C.; Romeu, J.; Pous, R.; Cardama, A.: On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans. Antennas Propag., 46 (4) (1998), 517524.Google Scholar
[4] Baliarda, C.P.; Romeu, J.; Cardama, A.: The Koch monopole: a small fractal antenna. IEEE Trans. Antennas Propag., 48 (11) (2000), 17731781.Google Scholar
[5] Best, S.R.: On the performance properties of Koch fractal and other bent wire monopole. IEEE Trans. Antennas Propag., 51 (6) (2003), 12921300.CrossRefGoogle Scholar
[6] Oraizi, S.; Hedayati, H.: Miniaturized UWB monopole microstrip antenna design by the combination of Giusepepeano and Sierpinski carpet fractals. IEEE Antennas Wireless Propag. Lett., 10 (2011), 6770.CrossRefGoogle Scholar
[7] Choukiker, Y.K.; Sharma, S.K.; Behera, S.K.: Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices. IEEE Trans. Antennas Propag., 62 (3) (2014), 14831488.Google Scholar
[8] Choukiker, Y.K.; Behera, S.K.: Design of wideband fractal antenna with combination of fractal geometries, in Proc. IEEE Eighth Int. Conf. on Information, Communications, and Signal Processing, Singapore, 2011, 13.CrossRefGoogle Scholar
[9] Chen, W.L.; Wang, G.M.; Chen-xin, Z.: Small-size microstrip patch antennas combining Koch and Sierpinski fractal-shapes. IEEE Antennas Wireless Propag. Lett., 7 (2008), 738741.Google Scholar
[10] Lizzi, L.; Oliveri, G.: Hybrid design of a fractal-shaped GSM/UMTS antenna. J. Electromagn. Waves Appl., 24 (5) (2010), 707719.CrossRefGoogle Scholar
[11] Anguera, J.; Puente, C.; Borja, C.; Montero, R.: Bowtie microstrip patch antenna based on the Sierpinski fractal, in Proc. IEEE Int. Symp. of Antennas and Propagation Society, Boston, MA, USA, 2001, 162165.Google Scholar
[12] Reed, S.; Desclos, L.; Terret, C.; Toutain, S.: Patch antenna size reduction by means of inductive slots. Microw. Opt. Technol. Lett., 29 (2001), 7981.Google Scholar