Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T12:42:26.640Z Has data issue: false hasContentIssue false

Bandwidth enhancement of capacitive fed monopole antenna using parasitic patches

Published online by Cambridge University Press:  09 January 2015

Kamalaveni Ayyadurai*
Affiliation:
Madras Institute of Technology Campus, Anna University, Chennai, India. Phone: + 91 8870567988
Ganesh Madhan Muthu
Affiliation:
Madras Institute of Technology Campus, Anna University, Chennai, India. Phone: + 91 8870567988
*
Corresponding author:A. Kamalaveni Email: [email protected]

Abstract

This paper proposed a compact planar monopole antenna operating at 5 GHz (5.180–5.825 GHz) industrial, scientific and medical (ISM) radio band. The antenna constructed with 20 mm × 12 mm radiating element and 25 mm square of the ground plane in FR4 substrate provided −10 dB bandwidth of 1 GHz (5.4–6.4 GHz). To improve the bandwidth, parasitic elements are added with the monopole antenna. A capacitive feed is also incorporated in the design. It observed that the proposed antenna with parasitic elements provides a larger impedance bandwidth of about 3 GHz (5.1–8.1 GHz), which is three-fold improvements over the one without parasitic patches. The prototype of the antenna that operates at 5.8 GHz frequency range is fabricated and characterized using a near-field measurement system. A good agreement is found between the simulation and measured results.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Behdad, N.; Meng, L.; Yusuf, Y.: A very low-profile, omnidirectional, ultra wideband antenna. IEEE Antennas Wireless Propag. Lett., 12 (2013), 280283.Google Scholar
[2]Chen, Z.N.: Broadband roll monopole. IEEE Trans. Antennas Propag., 51 (2003), 31753177.Google Scholar
[3]Kim, J.-H.; Son, W-I; Lee, W-S; Yu, J-W: Integrated planar monopole antenna with microstrip-ring resonators, in IEEE Int. Symp. Antennas Propag, Albuquerque, NM, 2006.Google Scholar
[4]Kshetrimayum, R.S.: Printed monopole antennas for multiband applications. Int. J. Microw. Opt. Tech., 3 (2008), 474480.Google Scholar
[5]Jusoh, M.; Jamlos, M.F.; Kamarudin, M.R.: A compact dual bevel planar monopole antenna with lumped element for ultra-high frequency very high frequency application. Microw. Opt. Tech. Lett., 54 (2012), 156160.Google Scholar
[6]Lau, K.L.; Li, P.; Luk, K.M.: A monopolar patch antenna with very wide impedance bandwidth. IEEE Trans. Antennas Propag., 53 (2005), 655661.CrossRefGoogle Scholar
[7]Wong, K.-L.; Su, S.-W.; Tang, C.-L.: Broadband omni directional metal-plate monopole antenna. IEEE Trans. Antennas Propag., 53 (2005), 581583.Google Scholar
[8]Nomikman, H.; Ahmad, B.H.; Abd Aziz, M.Z.A.; Othman, A.R.; Azlishah, M.A.; Malek, F.: Design Minkowski shaped patch antenna with rectangular parasitic patch elements for 5.8 GHz applications, in IEEE Symp. on Wireless Technology and Applications., Malaysia, 2013.Google Scholar
[9]Parmar, P.B.; Makwana, B.J.; Jajal, M.A.: Bandwidth enhancement of microstrip patch antenna using parasitic patch configuration, in Int. Conf. on Communication Systems and Network Technologies, Rajkot, 2012.CrossRefGoogle Scholar
[10]Tseng, C.F.; Huang, C.L.; Hsu, C.H.: Microstrip-fed monopole antenna with a shorted parasitic element for wideband application. PIER, 7 (2009), 115125.Google Scholar
[11]Abbosh, A.M.; Bialkowski, M.E.: Design of UWB planar band-notched antenna using parasitic elements. IEEE Trans. Antennas Propag., 57 (2009), 796799.CrossRefGoogle Scholar
[12]Tsukiji, T.; Kumon, Y.: A simple circularly polarized wave antenna using a modified transmission line antenna and spiral parasitic element, in IEEE Mobile and Wireless Communications Summit, Budapest, 2007.CrossRefGoogle Scholar
[13]Dong, J.; Wang, A.; Wang, P.; Hou, Y.: A novel stacked wideband microstrip patch antenna with U-shaped parasitic elements, in IEEE. Symp. on Antennas Propag. EM Theory (ISAPE), Kunming, (2008), 185188.Google Scholar
[14]Priyashman, V.; Jamlos, M.F.; Lago, H.; Jusoh, M.; Ahmad, Z.A.; Romli, M.A.; Salimi, M.N.: Effects of parasitic ring on the performance of an elliptical shaped antenna, in IEEE Symp. on Wireless Technology and Applications, Bandung, 2012.Google Scholar
[15]Kayat, S.M.; Ali, M.T.; Salleh, M.K.M.; Ramli, N.; Rusli, M.H.M.: Reconfigurable truncated rhombus-like microstrip slotted antenna with parasitic elements, in IEEE European Conf. on Antennas and Propagation (EuCAP), (2013), 898902.Google Scholar
[16]Abdullah, R.; Ali, M.T.; Ismail, N.; Omar, S.; Dzulkefli, N.N.S.N.: Multilayer parasitic microstrip antenna array for WiMAX application, in IEEE Asia-Pacific Conf. on Applied Electromagnetics (APACE), Melaka, 2012.CrossRefGoogle Scholar
[17]Mehfooz, U.; Rashdi, A.: Design of a high gain pencil beam dipole antenna using parasitic elements in X-band, in IEEE Radar Conf. (RADAR), Atlanta, GA, 2012.Google Scholar
[18]Kim, K.-B.; Ryu, H.K.; Woo, J.M.: Compact wideband folded monopole antenna coupled with parasitic inverted-L element for laptop computer applications. Electron. Lett., 47 (2011), 301303.Google Scholar
[19]Lee, J.-H.; Yook, J.-G.: Improvement of radiation performance of mobile phone antenna using parasitic element. IEEE Trans. Consumer Electron., 56 (2010), 24112415.Google Scholar
[20]Sato, K.; Amano, T.: Improvements of impedance and radiation performances with a parasitic element for mobile phone, in AP-S IEEE, San Diego, CA, 2008.Google Scholar