No CrossRef data available.
24 GHz low-power switch-channel CMOS transceiver for wireless localization
Published online by Cambridge University Press: 15 September 2014
Abstract
A 24 GHz low-power transceiver is designed, fabricated, and characterized using 130 nm complementary metal-oxide semiconductor (CMOS) process. The designed transceiver is targeted for frequency-modulated-continuous-wave (FMCW) wireless local positioning. The transceiver includes four switchable receiving channels, one transmitting channel and local-oscillator generation circuitries. Several power-saving techniques are implemented, such as switch channel and adaptive mixer biasing. The design aspects of the low-power circuit blocks and integration considerations are presented in details. The integrated transceiver has a chip area of only 2.2 mm × 1.7 mm. In transmitting mode the transceiver achieves an output power of 4 dBm and phase noise of −90 dBc/Hz at 1 MHz, while consuming 75 mW power consumption under 1.5 V power supply. In switch-channel receiving mode the transceiver demonstrates 31 dB gain and 6 dB noise figure with 65 mW power consumption. The transceiver measurements compare well with the simulated results and achieve state-of-the-art performance with very low-power consumption.
- Type
- Research Paper
- Information
- International Journal of Microwave and Wireless Technologies , Volume 7 , Issue 6 , December 2015 , pp. 615 - 622
- Copyright
- Copyright © Cambridge University Press and the European Microwave Association 2014