Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T07:07:16.388Z Has data issue: false hasContentIssue false

A 2-bit, 3.1 GS/s, band-pass DSM receiver for active antenna systems

Published online by Cambridge University Press:  23 April 2013

Udo Karthaus*
Affiliation:
Ubidyne GmbH, Magirusstr. 43, 89077 Ulm, Germany
Stephan Ahles
Affiliation:
Ubidyne GmbH, Magirusstr. 43, 89077 Ulm, Germany
Ahmed Elmaghraby
Affiliation:
University of Erlangen-Nuremberg, Cauerstr. 9, 91058 Erlangen, Germany
Horst Wagner
Affiliation:
Ubidyne GmbH, Magirusstr. 43, 89077 Ulm, Germany
*
Corresponding author: U. Karthaus Email: [email protected]

Abstract

This paper presents a radio frequency (RF) continuous-time band-pass delta sigma modulator (CT BP DSM) receiver realized in a 180 nm SiGe BiCMOS technology. It also provides an introduction to active antenna systems (AAS) for cellular infrastructure base stations, which is the target application for this RF integrated circuit (IC). The internal quantizer and feedback digital to analog converter (DAC) resolution of the CT BP DSM is 2 bit. Without applying DAC linearization techniques such as trimming or dynamic element matching being utilized, measured performance parameters include an SNR and SNDR in 35 MHz bandwidth of 56.7 and 53.7 dB, respectively. IIP3 and noise figure are −6.6 dBm and 10 dB, respectively. No image reception is noticeable within a measurement dynamic range of 83 dB. When driven by single-carrier and three-carrier W-CDMA signals, adjacent channel leakage ratio (ACLR) is −62.6 and −52.1 dB, respectively, making the design also suitable as a modulator for a class-S power amplifier.

Type
Industrial and Engineering Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Linehan, K.; Chandrasekaran, R.: Active Antennas: The Next Step in Radio and Antenna Evolution. 2011 [Online]. Available at http://docs.commscope.com/Public/active_antenna_system_white_paper.pdfGoogle Scholar
[2]Nokia Siemens Networks. Active Antenna Systems – A step-change in base station site performance. 2012 [Online]. Available at http://www.nokiasiemensnetworks.com/sites/default/files/document/nokia_siemens_networks_active_antenna_system_white_paper_26_01_12_0.pdfGoogle Scholar
[3]Karthaus, U.; Sukumaran, D.; Schmidt, L.; Ahles, S.; Wagner, H.: A 45 dBm balanced Power Amplifier Module based on four fully integrated Doherty PA MMICs, in European Microwave Conference, Amsterdam, 2012, 10271030.Google Scholar
[4]Chalvatzis, A.; Gagnon, E.; Repeta, M.; Voinigescu, S.: A low-noise 40 GS/s continuous-time bandpass ΔΣADC centered at 2 GHz for direct sampling receivers. IEEE J. Solid-State Circuits, 42 (2007), 10651074.Google Scholar
[5]Karthaus, U.; Ahles, S.; Elmaghraby, A.; Schick, C.; Datta, P.K.; Rheinfelder, C.: A 900 MHz, 3.6 Gb/s bandpass DSM receiver with 55.7 dB two-tone SFDR in 1 MHz bandwidth, in IEEE Int. Microwave Symp., San Francisco, 2009, 11331136.Google Scholar
[6]Thandri, B.; Silva-Martinez, J.: A 63 dB 75-mW band-pass RF ADC at 950 MHz using 3.8-GHz clock in 0.25-μm SiGe BiCMOS technology. IEEE J. Solid-State Circuits, 42 (2007), 269279.CrossRefGoogle Scholar
[7]Cherry, J.; Snelgrove, W.; Gao, W.: On the design of a fourth-order continuous-time LC delta-sigma modulator for UHF A/D conversion. IEEE Trans. Circuits Syst. II, 47 (2000), 518530.Google Scholar
[8]Schmidt, M. et al. : Continuous-time bandpass delta-sigma modulator for a signal frequency of 2.2 GHz, in German Microwave Conf., Munich, 2009, 14.CrossRefGoogle Scholar
[9]Ryckaert, J. et al. : A 2.4 GHz low-power sixth-order RF bandpass delta sigma converter in CMOS. IEEE J. Solid-State Circuits, 44 (2009), 28732880.Google Scholar
[10]Scheytt, J.C.; Ostrovskyy, P.; Gustat, H.: RF bandpass delta-sigma modulators for highly-efficient class-S transmitters in SiGe BiCMOS technology, in IEEE Int. Conf. Wireless Information Technology and Systems, Honolulu, 2010, 14.CrossRefGoogle Scholar
[11]Gao, W.; Shoaei, O.; Snelgrove, W.M.: Excess loop delay effects in continuous-time delta-sigma modulators and the compensation solution, in IEEE Int. Symp. Circuits and Systems, Hong Kong, 1997, 6568.Google Scholar
[12]Cherry, J.A.; Snelgrove, W.M.: Clock jitter and quantizer metastability in continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II, 46 (1999), 661676.Google Scholar
[13]Karthaus, U.; Ahles, A.; Elmaghraby, A.; Wagner, H.: A 2-bit, 3.1 GS/s, band-pass DSM receiver with 53.7 dB SNDR in 35 MHz bandwidth, in European Microwave Conf., Amsterdam, 2012, 661676.Google Scholar
[14]Kauffman, J.G.; Witte, P.; Becker, J.; Ortmanns, M.: An 8.5 mW continuous-time delta sigma modulator With 25 MHz bandwidth using digital background DAC linearization to achieve 63.5 dB SNDR and 81 dB SFDR. IEEE J. Solid-State Circuits, 46 (2011), 28692881.Google Scholar