Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T07:26:17.987Z Has data issue: false hasContentIssue false

20–25 Gbit/s low-power inductor-less single-chip optical receiver and transmitter frontend in 28 nm digital CMOS

Published online by Cambridge University Press:  02 May 2017

László Szilágyi*
Affiliation:
Technische Universität Dresden, Chair for Circuit Design and Network Theory, 01069 Dresden, Germany
Guido Belfiore
Affiliation:
Technische Universität Dresden, Chair for Circuit Design and Network Theory, 01069 Dresden, Germany
Ronny Henker
Affiliation:
Technische Universität Dresden, Chair for Circuit Design and Network Theory, 01069 Dresden, Germany
Frank Ellinger
Affiliation:
Technische Universität Dresden, Chair for Circuit Design and Network Theory, 01069 Dresden, Germany
*
Corresponding author: L. Szilágyi Email: [email protected]

Abstract

The design of an analog frontend including a receiver amplifier (RX) and laser diode driver (LDD) for optical communication system is described. The RX consists of a transimpedance amplifier, a limiting amplifier, and an output buffer (BUF). An offset compensation and common-mode control circuit is designed using switched-capacitor technique to save chip area, provides continuous reduction of the offset in the RX. Active-peaking methods are used to enhance the bandwidth and gain. The very low gate-oxide breakdown voltage of transistors in deep sub-micron technologies is overcome in the LDD by implementing a topology which has the amplifier placed in a floating well. It comprises a level shifter, a pre-amplifier, and the driver stage. The single-chip frontend, fabricated in a 28 nm bulk-digital complementary metal–oxide–semiconductor (CMOS) process has a total active area of 0.003 mm2, is among the smallest optical frontends. Without the BUF, which consumes 8 mW from a separate supply, the RX power consumption is 21 mW, while the LDD consumes 32 mW. Small-signal gain and bandwidth are measured. A photo diode and laser diode are bonded to the chip on a test-printed circuit board. Electro-optical measurements show an error-free detection with a bit error rate of 10−12 at 20 Gbit/s of the RX at and a 25 Gbit/s transmission of the LDD.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]“The Zettabyte era – Trends and analysis,” in Cisco Visual Networking Index, Cisco White Paper, 2015.Google Scholar
[2]“Cisco global cloud index: Forecast and methodology, 2014–2019,” in Cisco White Paper, 2015.Google Scholar
[3] Okamoto, D. et al. : A 25-Gb/s 5 × 5 mm2 chip-scale silicon photonic receiver integrated with 28-nm CMOS transimpedance amplifier. IEEE J. Lightwave Technol., 34 (12) (2016), 29882995.CrossRefGoogle Scholar
[4] Takemoto, T.; Yamashita, H.; Yazaki, T.; Chujo, N.; Yong, L.; Matsuoka, Y.: A 25-to-28 Gb/s high-sensitivity (−9.7 dBm) 65 nm CMOS optical receiver for board-to-board interconnects. IEEE J. Solid State Circuits, 49 (10) (2014), 22592276.Google Scholar
[5] Toifl, T. et al. : A 3.1 mW/Gbps 30 Gbps quarter-rate triple-speculation 15-tap SC-DFE RX data path in 32 nm CMOS, in IEEE VLSI Circuits Symp., 2012, 102103.Google Scholar
[6] Pan, Q. et al. : A 30-Gb/s 1.37-pJ/b CMOS receiver for optical interconnects. IEEE J. Lightwave Technol., 33 (4) (2015), 778786.Google Scholar
[7] Schow, C.L. et al. : Low-power 16 × 10 Gb/s bi-directional single chip CMOS optical transceivers operating at ≪5 mW/Gb/s/link. IEEE J. Solid State Circuits, 44 (1) (2009), 301313.Google Scholar
[8] Li, D. et al. : A Low-noise design technique for high-speed CMOS optical receivers. IEEE J. Solid State Circuits, 49 (6) (2014), 14371447.Google Scholar
[9] Chiang, P.-C.; Jiang, J.-Y.; Hung, H.-W.; Wu, C.-Y.; Chen, G.-S.; Lee, J.: 4 × 25 Gb/s transceiver with optical front-end for 100 GbE system in 65 nm CMOS technology. IEEE J. Solid State Circuits, 50 (2) (2015), 573585.Google Scholar
[10] Huang, T.-C. et al. : A 28 Gb/s 1 pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28 nm CMOS, in IEEE Int. Solid State Circuits Conf., 2014, 144145.CrossRefGoogle Scholar
[11] Szilagyi, L.; Belfiore, G.; Henker, R.; Ellinger, F.: A high-voltage DC bias architecture implementation in a 17 Gbps low-power common-cathode VCSEL driver in 80 nm CMOS, in IEEE Int. Symp. Circuits and Systems, 2015, 23852388.CrossRefGoogle Scholar
[12] Rylyakov, A. et al. : A 25 Gb/s burst-mode receiver for low latency photonic switch networks. IEEE J. Solid State Circuits, 50 (12) (2015), 31203132.Google Scholar
[13] Xuan, Z.; Ding, R.; Liu, Y.; Baehr-Jones, T.; Hochberg, M.; Aflatouni, F.: A low-power 40 Gb/s optical receiver in silicon, in IEEE Radio Frequency Integrated Circuits, 2015, 315318.Google Scholar
[14] Proesel, J.; Schow, C.; Rylyakov, A.: 25 Gb/s 3.6 pJ/b and 15 Gb/s 1.37 pJ/b VCSEL-based optical links in 90 nm CMOS, in IEEE Int. Solid State Circuits Conf., 2012, 418419.CrossRefGoogle Scholar
[15] Pan, Q. et al. : A 41-mW 30-Gb/s CMOS optical receiver with digitally-tunable cascaded equalization, in Eur. Solid State Circuits Conf., 2014, 127130.Google Scholar
[16] Han, J.; Yoo, K.; Lee, D.; Park, K.; Oh, W.; Park, S.M.: A low-power gigabit CMOS limiting amplifier using negative impedance compensation and its application. IEEE Trans. Very Large Scale Integr., 20 (3) (2012), 393399.Google Scholar
[17] Kromer, C. et al. : A 100-mW 4 × 10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects. IEEE J. Solid State Circuits, 40 (12) (2005), 26672679.CrossRefGoogle Scholar
[18] Szilagyi, L.; Belfiore, G.; Henker, R.; Ellinger, F.: Area-efficient offset compensation and common-mode control circuit with switched-capacitor technique in an 18 Gbps optical receiver in 80 nm CMOS, in IEEE Optical Interconnects Conf., 2015, 5859.Google Scholar
[19] Knochenhauer, C.; Wolf, R.; Sedighi, B.; Ellinger, F.: Fully integrated auto-zero feedback with lower cutoff frequency below 50 kHz in a 40 GBit/s transimpedance amplifier, in Semiconductor Conf. Dresden, 2011, 14.CrossRefGoogle Scholar
[20] Sedighi, B.; Scheytt, J.C.: 40 Gb/s VCSEL driver IC with a new output current and pre-emphasis adjustment method, in IEEE Microwave Theory and Technique Society, 2012, 13.Google Scholar
[21] Tsunoda, Y.; Sugawara, M.; Oku, H.; Ide, S.; Tanaka, K.: A 40 Gb/s VCSEL over-driving IC with group-delay-tunable pre-emphasis for optical interconnection, in IEEE Int. Solid State Circuits Conf., 2014, 154155.Google Scholar
[22] Yazaki, T.; Chujo, N.; Yamashita, H.; Takemoto, T.; Yong, L.; Matsuoka, Y.: 25-Gbps × 4 optical transmitter with adjustable asymmetric pre-emphasis in 65-nm CMOS, in IEEE Int. Symp. Circuits and Systems, 2014, 26922695.Google Scholar
[23] Chujo, N. et al. : A 25 Gbps 65-nm CMOS low-power laser diode driver with mutually coupled peaking inductors for optical interconnects. IEEE Trans. Circuits Syst., 58 (9) (2011), 20612068.Google Scholar
[24] Chen, Y.; Gong, J.; Yao, J.; Tian, L.: 4-Channel 35 Gbit/s parallel CMOS LDD. IET Electron. Lett., 51 (15) (2015), 11781180.CrossRefGoogle Scholar
[25] Belfiore, G.; Szilagyi, L.; Henker, R.; Ellinger, F.: Common cathode VCSEL driver in 90 nm CMOS enabling 25 Gbit/s optical connection using 14 Gbit/s 850 nm VCSEL. IET Electron. Lett., 51 (4) (2015), 349351.Google Scholar
[26] Saaedi, S.; Emami, A.: A 25 Gb/s 170 µW/Gb/s optical receiver in 28 nm CMOS for chip-to-chip optical communication, in IEEE Radio Frequency Integrated Circuits, 2014, 283286.Google Scholar
[27] Awny, A. et al. : A 40 Gb/s Monolithically integrated linear photonic receiver in a 0.25 µm BiCMOS SiGe: C technology. IEEE Microw. Wireless Compon. Lett., 25 (7) (2015), 469471.Google Scholar
[28] Schoeniger, D.; Henker, R.; Ellinger, F.: High-speed transimpedance amplifier with runtime adaptive bandwidth and power consumption in 0.13 µm SiGe BiCMOS. IET Electron. Lett., 52 (2) (2016), 154156.Google Scholar
[29] Moeneclaey, B. et al. : A 40-Gb/s transimpedance amplifier for optical links. IEEE Photonic Technol. Lett., 27 (13) (2015), 13751378.Google Scholar
[30] Kuchta, D.M. et al. : A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photonic Technol. Lett., 27 (6) (2015), 577580.Google Scholar
[31] Rylyakov, A. et al. : 35-Gb/s VCSEL-based optical link using 32-nm SOI CMOS circuits, in IEEE Optical Fiber Communication Conf./National Fiber Optical Engineers Conf., 2013, 12.Google Scholar
[32] Soenen, W. et al. : 40 Gb/s PAM-4 transmitter IC for long-wavelength VCSEL links. IEEE Photonic Technol. Lett., 27 (4) (2015), 344347.Google Scholar
[33] Kozlov, V.; Carusone, A.C.: A 15 Gb/s AC-coupled VCSEL driver with waveform shaping in 65 nm CMOS, in IEEE Compound Semiconductor Integrated Circuit Symp., 2015, 14.Google Scholar
[34] Wang, J. et al. : 4 × 30 Gbps 155 mW/channel VCSEL driver in 65 nm CMOS, in IEEE Optical Interconnects Conf., 2015, 111112.Google Scholar
[35] Shibata, M.; Carusone, A. C.: A 26-Gb/s 1.80-pJ/b CMOS-driven transmitter for 850-nm common-cathode VCSELs, in IEEE Optical Fiber Communication Conf., 2015, 13.CrossRefGoogle Scholar