Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T20:20:03.496Z Has data issue: false hasContentIssue false

Testing S isotopes as biomarkers for Mars

Published online by Cambridge University Press:  28 September 2018

Julian Chela-Flores*
Affiliation:
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy IDEA, Fundación Instituto de Estudios Avanzados, Caracas, República Bolivariana de Venezuela
*
Author for correspondence: Julian Chela-Flores: E-mail: [email protected]

Abstract

We suggest testing S isotopes as biomarkers for Mars. An analogous robust biosignature has recently been proposed for the forthcoming exploration of the icy surface of Europa, and in the long term for the exploration of the surfaces of other icy moons of the outer solar system. We discuss relevant instrumentation for testing the presence of life itself in some sites, whether extinct or extant in order to complement a set of other independent biosignatures. We pay special attention to the possible early emergence of sulphate-metabolizing microorganisms, as it happened on the early Earth. Fortunately, possible sites happen to be at likely landing sites for future missions ExoMars and Mars 2020, including Oxia Planum and Mawrth Vallis. We suggest how to make additional feasible use of the instruments that have already been approved for future missions. With these instruments, the proposed measurements can allow testing S isotopes on Mars, especially with the Mars Organic Molecule Analyzer.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arridge, CS, Achilleos, N, Agarwal, J, Agnor, CB, Ambrosi, R, André, N, Badman, SV, Baines, K, Banfield, D, Barthelemy, M, Bisi, MM, Blum, J, Bocanegra-Bahamon, T, Bonfond, B, Bracken, C, Brandt, P, Briand, C, Briois, C, Brooks, S, Castillo-Rogez, J, Cavalie, T, Christophe, B, Coates, AJ, Collinson, G, Cooper, JF, Costa-Sitja, M, Courtin, R, Daglis, IA, de Pater, I, Desai, M, Dirkx, D, Dougherty, MK, Ebert, RW, Filacchione, G, Fletcher, LN, Fortney, J, Gerth, I, Grassi, D, Grodent, D, Grun, E, Gustin, J, Hedman, M, Helled, R, Henri, P, Hess, S, Hillier, JK, Hofstadter, MH, Holme, R, Horanyi, M, Hospodarsky, G, Hsu, S, Irwin, P, Jackman, CM, Karatekin, O, Kempf, S, Khalisi, E, Konstantinidis, K, Kruger, H, Kurth, WS, Labrianidis, C, Lainey, V, Lamy, LL, Laneuville, M, Lucchesi, D, Luntzer, A, MacArthur, J, Maier, A, Masters, A, McKenna-Lawlor, S, Melin, H, Milillo, A, Moragas-Klostermeyer, G, Morschhauser, A, Moses, JI, Mousis, O, Nettelmann, N, Neubauer, FM, Nordheim, T, Noyelles, B, Orton, GS, Owens, M, Peron, R, Plainaki, C, Postberg, F, Rambaux, N, Retherford, K, Reynaud, S, Roussos, E, Russell, CT, Rymer, AM, Sallantin, R, Sanchez-Lavega, A, Santolik, O, Saur, J, Sayanagi, KM, Schenk, P, Schubert, J, Sergis, N, Sittler, EC, Smith, A, Spahn, F, Srama, R, Stallard, T, Sterken, V, Sternovsky, Z, Tiscareno, M, Tobie, G, Tosi, F, Trieloff, M, Turrini, D, Turtle, EP, Vinatier, S, Wilson, R and Zarka, T (2014) The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets. Planetary and Space Science 104, 122140.Google Scholar
Baross, JA and Hoffman, SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life and Evolution of the Biosphere 15, 327345.Google Scholar
Bell, EA, Boehnike, P, Mark Harrison, T and Mao, WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proceedings of the National Academy of Sciences of the United States of America 112, 1451814521.Google Scholar
Bibring, J-P, Langevin, Y, Mustard, JF, Poulet, F, Arvidson, R, Gendrin, A, Gondet, B, Mangold, N, Pinet, P and Forget, F and the OMEGA Team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312, 400404.Google Scholar
Bocanegra-Bahamon, T, Colm, B, Sitja, MC, Dirkx, D, Gerth, I, Konstantinidis, K, Labrianidis, C, Laneuville, M, Luntzer, A, MacArthur, JL, Maier, A, Morschhauser, A, Nordheim, TA, Sallantin, R and Tlustos, R (2015) MUSE – mission to the Uranian system: unveiling the evolution and formation of ice giants. Advances in Space Research 55, 21902216.Google Scholar
Chela-Flores, J (2017) Forum article: instrumentation for testing whether the icy moons of the gas and ice giants are inhabited. Astrobiology 17, 958961. http://www.ictp.it/~chelaf/ABJ_2017_3.pdf.Google Scholar
Chela-Flores, J, Cicuttin, A, Crespo, ML and Tuniz, C (2015) Biogeochemical fingerprints of life: earlier analogies with polar ecosystems suggest feasible instrumentation for probing the Galilean moons. International Journal of Astrobiology (Cambridge University Press) 14, 427434. http://www.ictp.it/~chelaf/IJA2015.pdf.Google Scholar
Christophe, B, Spilker, LJ, Anderson, JD, Andre, N, Asmar, SW, Aurnou, J, Banfield, D, Barucci, A, Bertolami, O, Bingham, R, Brown, P, Cecconi, B, Courty, J-M, Dittus, H, Fletcher, LN, Foulon, B, Francisco, F, Gil, PJS, Glassmeier, KH, Grundy, W, Hansen, C, Helbert, J, Helled, R, Hussmann, H, Lamine, B, Lämmerzahl, C, Lamy, L, Lehoucq, R, Lenoir, B, Levy, A, Orton, G, Páramos, J, Poncy, J, Postberg, F, Progrebenko, SV, Reh, KR, Reynaud, S, Robert, C, Samain, E, Saur, J, Sayanagi, KM, Schmitz, N, Selig, H, Sohl, F, Spilker, TR, Srama, R, Stephan, K, Touboul, P and Wolf, P (2012) OSS (outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt. Experimental Astronomy 34, 203242.Google Scholar
Crossfield, IJM, Petigura, E, Schlieder, JE, Howard, AW, Fulton, BJ, Aller, KM, Ciardi, DR, Lepine, S, Barclay, T, de Pater, I, de Kleer, K, Quintana, EV, Christiansen, JL, Schlafly, E, Kaltenegger, L, Crepp, JR, Henning, T, Obermeier, C, Deacon, N, Hansen, BMS, Liu, MC, Greene, T, Howell, SB, Barman, T and Mordasini, C (2015) A nearby M star with three transiting super-Earths discovered by K2. The Astrophysical Journal 804, 10, arXiv:1501.03798[astro-ph].Google Scholar
Dai, X and Guerras, E (2018) Probing extragalactic planets using quasar microlensing. The Astrophysical Journal Letters 853, L27.Google Scholar
Dodd, MS, Papineau, D, Grenne, T, Slack, JF, Rittner, M, Pirajno, F, O'Neil, J and Little, CTS (2017) Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature 543, 6064.Google Scholar
Farquhar, J, Savarino, J, Jackson, TL and Thiemens, SH (2000) Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites. Nature 404, 5052.Google Scholar
Gaillard, F, Michalski, J, Berger, G, McLennan, SM and Scaillet, B (2013) Geochemical reservoirs and timing of sulfur cycling on Mars. Space Science Reviews 174, 251300.Google Scholar
Goesmann, F, Brinckerhoff, WB, Raulin, F, Goetz, W, Danell, RM, Getty, SA, Siljestrom, S, Mißbach, H, Steininger, H, Arevalo, RD Jr., Buch, A, Freissinet, C, Grubisic, A, Meierhenrich, UJ, Pinnick, VT, Stalport, F, Szopa, C, Vago, JL, Lindner, R, Schulte, MD, Brucato, JR, Glavin, DP, Grand, N, Xiang, L and van Amerom, FHW and the MOMA Science Team (2017). The Mars Organic Molecule Analyzer (MOMA) instrument: characterization of organic material in martian sediments. Astrobiology 17, 655685.Google Scholar
Grasset, O, Dougherty, MK, Coustenis, A, Bunce, EJ, Erde, C, Titov, D, Blanc, M, Coates, A, Drossart, P, Fletcher, LN, Hussmann, H, Jaumann, R, Krupp, N, Lebreton, J-P, Prieto-Ballesteros, O, Tortora, P, Tosi, F and Van Hoolst, T (2013) JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planetary and Space Science 78, 121.Google Scholar
Greely, R (2013) Planetary Geomorphology. Cambridge, UK: Cambridge University Press, p. 145.Google Scholar
Grotzinger, JP, Crisp, J, Vasavada, AR, Anderson, RC, Baker, CJ, Barry, R, Blake, DF, Conrad, P, Edgett, KS, Ferdowski, B, Gellert, R, Gilbert, JB, Golombek, M, Gomez-Elvira, J, Hassler, DM, Jandura, L, Litvak, M, Mahaffy, P, Maki, J, Meyer, M, Malin, MC, Mitrofanov, I, Simmonds, JJ, Vaniman, D, Welch, RV and Wiens, RC (2012) Mars science laboratory mission and science investigation. Space Science Reviews 170, 556.Google Scholar
Guzman, M, Lorenz, R, Hurley, D, Farrell, W, Spencer, J, Hansen, C, Hurford, T, Ibea, J, Carlson, P and McKay, CP (2018) Collecting amino acids in the Enceladus plume. International Journal of Astrobiology, 113. doi: 10.1017/S1473550417000544.Google Scholar
Halevy, I and Schrag, DP (2009) Sulfur dioxide inhibits calcium carbonate precipitation: implications for early Mars and Earth. Geophysical Research Letters 36, L23201.Google Scholar
Hussmann, H, Sohl, F and Spohn, T (2006) Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objects. Icarus 185, 258273.Google Scholar
Johnson, SS, Anslyn, EV, Graham, HV, Mahaffy, PR and Ellington, AD (2018) Fingerprinting Non-Terran biosignatures. Astrobiology 18, 18.Google Scholar
Kaplan, IR (1975) Stable isotopes as a guide to biogeochemical processes. Proceedings of the Royal Society of London. Series B 189, 183211.Google Scholar
Kerber, L, Forget, F and Wordsworth, RD (2015) Sulfur in the early martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261, 133148.Google Scholar
Kite, EW, Williams, J-P and Aharonson, O (2014) Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nature Geoscience 7, 335339.Google Scholar
Kvenvolden, KA, Lawless, J, Pering, K, Peterson, E, Flores, J, Ponnamperuma, C, Kaplan, IR and Moore, C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228, 923926.Google Scholar
McKay, CP (2001) The search for a second genesis of life in our Solar System. In Chela-Flores, J, Owen, T and Raulin, F (eds), The First Steps of Life in the Universe. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 269–267.Google Scholar
McKay, CP (2008) An approach to searching for life on Mars, Europa, and Enceladus. Space Science Reviews 135, 4954.Google Scholar
Meunier, A, Petit, S, Cockell, CS, El Albani, A and Beaufort, D (2010) The Fe-rich clay microsystems in basalt-komatiite lavas: importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean Eon. Origins of Life and Evolution of the Biosphere 40, 253272.Google Scholar
Mojzsis, SJ, Harrison, TM and Pidgeon, RT (2001) Oxygen isotope evidence from ancient zircons for liquid water at the Earth's surface 4300 Myr ago. Nature 409, 178181.Google Scholar
Nemchin, AA, Pidgeon, RT and Whitehouse, MJ (2006) Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth and Planetary Science Letters 244, 218233.4.2+Ga+zircons+from+the+Jack+Hills+metasedimentary+rocks.+Earth+and+Planetary+Science+Letters+244,+218–233.>Google Scholar
Orosei, R, Lauro, SE, Pettinelli, E, Cicchetti, A, Coradini, M, Cosciotti, B, Di Paolo, F, Flamini, E, Mattei, E, Pajola, M, Soldovieri, F, Cartacci, M, Cassenti, F, Frigeri, A, Giuppi, S, Martufi, R, Masdea, A, Mitri, G, Nenna, C, Noschese, R, Restano, M and Seu, R (2018). Radar evidence of subglacial liquid water on Mars. Science 361, eaar7268.Google Scholar
Pearce, BKD, Tupper, AS, Pudritz, RE and Higgs, PG (2018) Constraining the time interval for the origin of life on Earth. Astrobiology 18, 343364.Google Scholar
Philippot, P, Van Zuilen, M, Lepot, K, Thomazo, C, Farquhar, J and Van Kranendonk, MJ (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317, 15341537.Google Scholar
Phillips, CB and Pappalardo, RT (2014) Europa Clipper mission concept: exploring Jupiter's ocean moon. Eos 95, 165167.Google Scholar
Reysenbach, AL and Cady, S (2001) Microbiology of ancient and modern hydrothermal systems. Trends in Microbiology 9, 7986.Google Scholar
Shen, Y, Buick, R and Canfield, DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 7781.Google Scholar
Siegert, MJ, Ellis-Evans, JC, Tranter, M, Mayer, C, Petit, JR, Salamatin, A and Priscu, JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414, 603609.Google Scholar
Siegert, MJ, Carter, S, Tabacco, I, Popov, S and Blankenship, DD (2005) A revised inventory of Antarctic subglacial lake. Antarctic Science 17, 453460.Google Scholar
Tashiro, T, Ishida, A, Hori, M, Igisu, M, Koike, M, Méjean, P, Takahata, N, Sano, Y and Komiya, T (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549, 516518.Google Scholar
Tulej, M, Neubeck, A, Ivarsson, M, Riedo, A, Neuland, MB, Meyer, S and Wurz, P (2015) Chemical composition of micrometer-sized filaments in an aragonite host by a miniature laser ablation/ionization mass spectrometer. Astrobiology 15, 114.Google Scholar
Turrini, D, Politi, R, Peron, R, Grassi, D, Plainaki, C, Barbieri, M, Lucchesi, DM, Magni, G, Altieri, F, Cottini, V, Gorius, N, Gaulme, P, Schmider, F-X, Adriani, A and Piccioni, G (2014) The comparative exploration of the ice giant planets with twin spacecraft: unveiling the history of our Solar System. Planetary and Space Science 104, 93107.Google Scholar
Wiesendanger, R, Wacey, D, Tulej, M, Neubeck, A, Ivarsson, I, Grimaudo, V, Moreno-Garcia, P, Cedeno-Lopez, A, Riedo, A and Wurz, P (2018) Chemical and optical identification of micrometer-sized 1.9 billion-year-old fossils by combining a miniature laser ablation ionization mass spectrometry system with an optical microscope. Astrobiology 18, 10711080.Google Scholar
Wilde, SA, Valley, JW, Peck, WH and Graham, CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175178.Google Scholar