Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-15T22:13:34.691Z Has data issue: false hasContentIssue false

The Sun, geomagnetic polarity transitions, and possible biospheric effects: review and illustrating model

Published online by Cambridge University Press:  02 July 2009

Karl-Heinz Glassmeier
Affiliation:
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstrasse 3, D-38106 Braunschweig, Germany Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau, Germany e-mail: [email protected]
Otto Richter
Affiliation:
Institut für Geoökologie, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany
Joachim Vogt
Affiliation:
School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759Bremen
Petra Möbus
Affiliation:
Johann Heinrich von Thünen Institut, Bundesallee 50, D-38116 Braunschweig, Germany
Antje Schwalb
Affiliation:
Institut für Umweltgeologie, Technische Universität Braunschweig, Pockelsstrasse 3, D-38106 Braunschweig, Germany

Abstract

The Earth is embedded in the solar wind, this ever-streaming extremely tenuous ionized gas emanating from the Sun. It is the geomagnetic field which inhibits the solar wind plasma to directly impinge upon the terrestrial atmosphere. It is also the geomagnetic field which moderates and controls the entry of energetic particles of cosmic and solar origin into the atmosphere. During geomagnetic polarity transitions the terrestrial magnetic field decays down to about 10% of its current value. Also, the magnetic field topology changes from a dipole dominated structure to a multipole dominated topology. What happens to the Earth system during such a polarity transition, that is, during episodes of a weak transition field? Which modifications of the configuration of the terrestrial magnetosphere can be expected? Is there any influence on the atmosphere from the intensified particle bombardment? What are the possible effects on the biosphere? Is a polarity transition another example of a cosmic cataclysm? A review is provided on the current understanding of the problem. A first, illustrating model is also discussed to outline the complexity of any biospheric reaction on polarity transitions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumgartner, S., Beer, J., Masarik, J., Wagner, G., Meynadier, L. & Synal, H.-A. (1998). Geomagnetic modulation of the 36Cl flux in the GRIP ice core Greenland. Science 279, 13301334. doi: 10.1126/science.279.5355.1330.CrossRefGoogle ScholarPubMed
Black, D.I. (1967). Cosmic ray effects and faunal extinctions at geomagnetic field reversals. Earth Planet. Sci. Lett. 3, 225236. doi: 10.1016/0012-821X(67)90042-8.CrossRefGoogle Scholar
Casale, G.R., Meloni, D., Miano, S., Palmieri, S., Siani, A.M. & Cappellani, F. (2000). Solar UV-B irradiance and total ozone in Italy: fluctuations and trends. J. Geophys. Res. 105, 48954902. doi: 10.1029/1999JD900303.CrossRefGoogle Scholar
Chattopadhyay, J. & Sarkar, R.R. (2003). Chaos to order: preliminary experiments with a population dynamics model of three trophic levels. Ecol. Mod. 163, 4550.CrossRefGoogle Scholar
Cockell, C.S. & Blaustein, A.R. (eds). (2001). Ecosystems, Evolution, and Ultraviolet Radiation. Springer, Berlin.CrossRefGoogle Scholar
Constable, C.G. & Parker, R.L. (1988). Statistics of the geomagnetic secular variation for the past 5 m.y. J. Geophys. Res. 93, 11 56911 578. doi: 10.1029/JB093iB10p11569.CrossRefGoogle Scholar
Courtillot, V., Gallet, Y., Le Mouël, J.-L., Fluteau, F. & Genevey, A. (2007). Are there connections between the Earth's magnetic field and climate? Earth Planet. Sci. Lett. 253, 328339.CrossRefGoogle Scholar
Crutzen, P.J., Isaksen, I.S.A. & Reid, G.C. (1975). Solar Proton Events: stratospheric sources of nitric oxide. Science 189, 457459. doi: 10.1126/science.189.4201.457.CrossRefGoogle ScholarPubMed
Cullen, J.J. & Lesser, P.M. (1991). Photoinhibition by uv-b radiation. Marine Biology 111, 183190.CrossRefGoogle Scholar
Eilers, P.H.C. & Peeters, J.C.H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42, 199215.CrossRefGoogle Scholar
Ekelund, N. (1994). Influence of UV-b radiation on photosynthetic light response curves, absorption spectra and motility of four phytoplankton species. Physiologica Plantarum 91, 696702.CrossRefGoogle Scholar
Fabian, K. & Leonhardt, R. (2009). Records of paleomagnetic field variations. In Geomagnetic Variations, eds Glassmeier, K.H., Soffel, H. & Negendank, J.W., pp. 65106. Springer, Berlin.CrossRefGoogle Scholar
Glassmeier, K., Vogt, J., Stadelmann, A. & Buchert, S. (2004). Concerning long-term geomagnetic variations and space climatology. Ann. Geophys. 22, 36693677.CrossRefGoogle Scholar
Glassmeier, K.H., Soffel, H. & Negendank, J.W. (eds). (2009). Geomagnetic Variations. Springer, Berlin.CrossRefGoogle Scholar
Glatzmaier, G.A. & Roberts, P.H. (1995). A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203207. doi: 10.1038/377203a0.CrossRefGoogle Scholar
Gröbner, J. et al. (2000). Variability of spectral solar ultraviolet irradiance in an alpine environment. J. Geophys. Res. 105, 26 99127 004. doi: 10.1029/2000JD900395.CrossRefGoogle Scholar
Guyodo, Y. & Valet, J.-P. (1999). Global changes in intensity of the Earth's magnetic field during the past 800kyr. Nature 399, 249252. doi: 10.1038/20420.CrossRefGoogle Scholar
Häder, D.-P. (2001). Ultraviolet radiation and aquatic microbial ecosystems. In Ecosystems, Evolution, and Ultraviolet Radiation, eds Cockell, C.C. & Blaustein, A.R., pp. 150169. Springer, Berlin.CrossRefGoogle Scholar
Häder, D.-P., Kumar, H.D., Smith, R.C. & Worrest, R.C. (2007). Effects of solar uv radiation on aquatic ecosystems and interaction with climate change. Photochem. Photobiol. Sci. 6, 267285.CrossRefGoogle ScholarPubMed
Hays, J.D. (1971). Faunal extinctions and reversals of the Earth's magnetic field. Geol. Soc. Am. Bull. 82, 24332447.CrossRefGoogle Scholar
Hays, J.D. (1972). Faunal extinctions and reversals of the earth's magnetic field: Reply. Geol. Soc. Am. Bull. 83, 2215.CrossRefGoogle Scholar
Jackman, C.H., McPeters, R.D., Labow, G.J., Fleming, E.L., Praderas, C.J. & Russell, J.M. (2001). Northern hemisphere atmospheric effects due to the July 2000 solar proton event. Geophys. Res. Lett. 28, 28832886. doi: 10.1029/2001GL013221.CrossRefGoogle Scholar
Kallenrode, M.-B. (2004). Space Physics: An Introduction to Plasmas, and Particles in the Heliosphere and Magnetospheres. Springer, Berlin.CrossRefGoogle Scholar
Klausmeier, C.A. & Lichman, E. (2001). Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnol. Oceanogr. 46, 19982007.CrossRefGoogle Scholar
Knudsen, M.F. & Riisager, P. (2009). Is there a link between Earth's magnetic field and low-latitude precipiation? Geology 37, 7174.CrossRefGoogle Scholar
Korte, M. & Constable, C.G. (2006). Centennial to millennial geomagnetic secular variation. Geophys. J. Int. 167, 4352. doi: 10.1111/j.1365-246X.2006.03088.x.CrossRefGoogle Scholar
Kuwahara, V.S., Ogawa, H., Toda, T., Kikuchi, T. & Taguchi, S. (2000). Variability of bio-optical factors influencing the seasonal attenuation of ultraviolet radiation in temperate coastal waters of japan. Photochem. Photobiol. 72, 193199.2.0.CO;2>CrossRefGoogle ScholarPubMed
Leonhardt, R. & Fabian, K. (2007). Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172195. doi: 10.1016/j.epsl.2006.10.025.CrossRefGoogle Scholar
Madronich, S., McKenzie, R.L., Björn, L.O. & Caldwell, M.M. (1998). Changes in biologically active ultraviolet radiation reaching the earth's surface. UNEP Environmental Effects Panel Report, pp. 519. United Nations, New York.Google Scholar
Mann, C.J. (1972). Faunal extinctions and reversals of the earth's magnetic field: Discussion. Geol. Soc. Am. Bull. 83, 22112214.CrossRefGoogle Scholar
Marshall, H. (1928). Ultra-violet and extinction. The American Naturalist 62, 165187.CrossRefGoogle Scholar
McHargue, L.R., Donahue, D., Damon, P.E., Sonett, C.P., Biddulph, D. & Burr, G. (2000). Geomagnetic modulation of the late Pleistocene cosmic-ray flux as determined by 10Be from Blake Outer Ridge marine sediments. Nucl. Instrum. Methods Phys. Res. B 172, 555561. doi: 10.1016/S0168-583X(00)00092-6.CrossRefGoogle Scholar
Merrill, R.T. & McFadden, P.L. (1999). Geomagnetic polarity transitions. Rev. Geophys. 37, 201226.CrossRefGoogle Scholar
Mewaldt, R.A. (2006). Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303316. doi: 10.1007/s11214-006-9091-0.CrossRefGoogle Scholar
Morrison, J.R. & Nelson, B.N. (2004). Seasonal cycle of phytoplankton uv absorption at the bermuda atlantic time-series site. Limnol. Oceanogr. 49, 215224.CrossRefGoogle Scholar
Plotnick, R.E. (1980). Relationship between biological extinctions and geomagnetic reversals. Geology 8, 578581.2.0.CO;2>CrossRefGoogle Scholar
Raup, D.M. (1985). Magnetic reversals and mass extinctions. Nature 314, 341343. doi: 10.1038/314341a0.CrossRefGoogle ScholarPubMed
Reid, G.C., Solomon, S. & Garcia, R.R. (1991). Response of the middle atmosphere to the solar proton events of august-december, 1989. Geophys. Res. Lett. 18, 10191022. doi: 10.1029/91GL01049.CrossRefGoogle Scholar
Selkin, P. & Tauxe, L. (2000). Long term variations in geomagnetic field intensity. Phil. Trans. Roy. Soc. 358, 8691223.CrossRefGoogle Scholar
Sinnhuber, M., Burrows, J.P., Chipperfield, M.P., Jackman, C.H., Kallenrode, M.-B., Künzi, K.F. & Quack, M. (2003). A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophys. Res. Lett. 30, ASC 10-1. doi: 10.1029/2003GL017265.CrossRefGoogle Scholar
Siscoe, G.L. & Chen, C.-K. (1975). The paleomagnetosphere. J. Geophys. Res. 80, 46754680. doi: 10.1029/JA080i034p04675.CrossRefGoogle Scholar
Siscoe, G.L. & Crooker, N.J. (1976). Auroral zones in a quadrupole magnetosphere. J. Geomagn. Geoelectr. 28, 19.CrossRefGoogle Scholar
Smart, D.F., Shea, M.A. & Flückiger, E.O. (2000). Magnetospheric models and trajectory computations. Space Sci. Rev. 93, 305333.CrossRefGoogle Scholar
Soffel, H. (1991). Paläomagnetismus und Archäomagnetismus. Springer, Heidelberg, 1991.CrossRefGoogle Scholar
Solomon, S. (1988). The mystery of the Antarctic ozone ‘hole’. Rev. Geophys. 26, 131148. doi: 10.1029/RG026i001p00131.CrossRefGoogle Scholar
Stadelmann, A. (2004). Globale Effekte einer Magnetfeldumkehr: Magnetosphärenstruktur und kosmische Teilchen. Dissertation, Technische Universität Braunschweig.Google Scholar
Stadelmann, A., Vogt, J., Glassmeier, K.H., Kallenrode, M.-B. & Voigt, G.H. (2009). Cosmic ray and solar energetic particle flux in paleomagnetospheres. Earth, Planets, Space 61, in press.Google Scholar
Staehelin, J., Harris, N.R.P., Appenzeller, C. & Eberhard, J. (2001). Ozone trends: a review. Rev. Geophys. 39, 231290. doi: 10.1029/1999RG000059.CrossRefGoogle Scholar
Steele, J.H. (1962). Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7, 137150.CrossRefGoogle Scholar
Steinberg, S., Nelson, N., Carlson, C. & Prusk, A. (2004). Production of chromophoric dissolved organic matter (cdom) in the open ocean by zooplankton and the colonial cyanobacterium trichodesmium spp. Mar. Ecol. Prog. Ser. 2647, 47.Google Scholar
Svensmark, H. (2007). Cosmoclimatology: a new theory emerges. Astronomy & Geophysics 48, 1.181.24.CrossRefGoogle Scholar
Svensmark, H., Pedersen, J.O.P., Marsh, N.D., Enghoff, M.B. & Uggerhøj, U.I. (2007). Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc. Royal Soc. London, Series A 463, 385396. doi: 10.1098/rspa.2006.1773.Google Scholar
Tarduno, J.A., Cottrell, R.D., Watkeys, M.K. & Bauch, D. (2007). Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446, 657660.CrossRefGoogle ScholarPubMed
Tinsley, B.A. & Deen, G.W. (1991). Apparent tropospheric response to MeV–GeV particle flux variations: A connection via electrofreezing of supercooled water in high-level clouds? J. Geophys. Res. 96, 22 28322 296. doi: 10.1029/91JD02473.CrossRefGoogle Scholar
Uffen, R.J. (1963). Influence of the Earth's Core on the origin and evolution of life. Nature 198, 143144. doi: 10.1038/198143b0.CrossRefGoogle Scholar
Vogt, J. & Glassmeier, K.-H. (2000). On the location of trapped particle populations in quadrupole magnetospheres. J. Geophys. Res. 105, 13 06313 072. doi: 10.1029/2000JA900006.CrossRefGoogle Scholar
Vogt, J., Zieger, B., Stadelmann, A., Glassmeier, K.-H., Gombosi, T.I., Hansen, K.C. & Ridley, A.J. (2004). MHD simulations of quadrupolar paleomagnetospheres. J. Geophys. Res. 109, A12221. doi: 10.1029/2003JA010273.CrossRefGoogle Scholar
Vogt, J., Zieger, B., Glassmeier, K.-H., Stadelmann, A., Kallenrode, M.-B., Sinnhuber, M. & Winkler, H. (2007). Energetic particles in the paleomagnetosphere: Reduced dipole configurations and quadrupolar contributions. J. Geophys. Res. 112, A06216. doi: 10.1029/2006JA012224.CrossRefGoogle Scholar
Vogt, J., Sinnhuber, M. & Kallenrode, M.-B. (2009). Effects of geomagnetic variations on system Earth. In Geomagnetic Variations, ed. Glassmeier, K.H., Soffel, H. & Negendank, J.W., pp. 159208. Springer, Berlin.CrossRefGoogle Scholar
Voigt, G.-H. (1981). A mathematical magnetospheric field model with independent physical parameters. Planet. Space Sci. 29, 120. doi: 10.1016/0032-0633(81)90134-3.CrossRefGoogle Scholar
Watkins, N.D. & Goodell, H.G. (1967). Geomagnetic polarity change and faunal extinction in the southern ocean. Science 156, 10831087.CrossRefGoogle ScholarPubMed
Winkler, H., Sinnhuber, M., Notholt, J., Kallenrode, M.-B., Steinhilber, F., Vogt, J., Zieger, B., Glassmeier, K.-H. & Stadelmann, A. (2008). Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales. J. Geophys. Res. 113, 23022316. doi: 10.1029/2007JD008574.CrossRefGoogle Scholar
Zieger, B., Vogt, J., Glassmeier, K.-H. & Gombosi, T.I. (2004). Magnetohydrodynamic simulation of an equatorial dipolar paleomagnetosphere. J. Geophys. Res. 109, A7205. doi: 10.1029/2004JA010434.CrossRefGoogle Scholar
Zieger, B., Vogt, J. & Glassmeier, K.-H. (2006). Scaling relations in the paleomagnetosphere derived from MHD simulations. J. Geophys. Res. 111, A6203. doi: 10.1029/2005JA011531.CrossRefGoogle Scholar