Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T03:58:06.331Z Has data issue: false hasContentIssue false

Study of putative microfossils in space dust from the stratosphere

Published online by Cambridge University Press:  19 May 2010

Kani Rauf
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3DY, UK
Anthony Hann
Affiliation:
School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
Max Wallis
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3DY, UK
Chandra Wickramasinghe*
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3DY, UK

Abstract

Interplanetary dust particles (IDPs) were recovered from the stratosphere by a cryosampler flown below a balloon flying at altitudes of 20–41 km. The present study uses high-resolution scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) spectrophotometry to examine fresh samples collected at 38–41 km. The SEM observations confirm the presence of 7–32 μm sized clusters of coccoidal (0.4–1.3 μm in diameter) and rod-shaped (0.6–2.5 μm in length) objects as components of the IDP complex. Many single globules (1.6–9.0 μm in diameter) are also observed, some of which exhibit a rough surface with filamentous features of variable lengths. The spectrophotometry of the particles in aggregate reveals a prominent peak centred at 216 nm, which is remarkably similar to that of diatoms and close to the UV astronomical feature of 217.5 nm that has been identified as the spectral characteristic of aromatic hydrocarbons. The evidence presented here suggests that the stratospheric particles are IDPs comprising an assortment of materials among which are included microfossil-like features in variable sizes and forms, such as coccoids, rods and filaments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, J.P., Humecki, H.J. & Germani, M.S. (1992). Ap. J. 394, 643651.Google Scholar
Bradley, J.P., Keller, L.P., Snow, T.P., Hanner, M.S., Flynn, G.J., Gezo, J.C., Clemett, S.J., Brownlee, D.E. & Bowey, J.E. (1999). Science 285(5434), 17161718.Google Scholar
Brownlee, D.E. (1985). Science 13, 147.Google Scholar
Brownlee, D.E., Joswiak, D.J., Bradley, J.P., Gezo, J.C. & Hill, H.G.M. (2000). Lunar Planet. Sci. XXXI, 19211922.Google Scholar
Bruch, C.W. (1967). Microbes in the upper atmosphere and beyond. In Proc. Airborne Microbes, Society for General Microbiology Symposium, 17, pp. 345373. ed. Gregory, P.H. & Monteith, J.L.Cambridge University Press, Cambridge.Google Scholar
Buczynsik, C. & Chafetz, H.S. (1991). J. Sediment. Res. 61(2), 226233.CrossRefGoogle Scholar
Chen, J., Li, M., Li, A. & Wang, Y. (2008) On buckyonions as a carrier of the 2175°A interstellar extinction feature. In Proc. Organic Matter in Space IAU Symposium No. 251, pp. 7172.CrossRefGoogle Scholar
Clemett, S., Maechling, C., Zare, R., Swan, P. & Walker, R. (1993). Science 262(5134), 721725.CrossRefGoogle Scholar
Darling, D. (2001). Life Everywhere. Basic Books, New York.Google Scholar
Draine, B.T. & Malhotra, S. (1993). Astrophys. J. 414, 632.CrossRefGoogle Scholar
Fitzpatrick, E.L. & Massa, D. (2007). Ap. J. 663, 320341.CrossRefGoogle Scholar
Flynn, G.J., Keller, L.P., Jacobsen, C., Wirick, S. & Miller, M.A. (1999). Organic carbon in interplanetary dust particles. In Proc. Bioastronomy 99: A New Era in Bioastronomy, 6th Bioastronomy Meeting, Kohala Coast, Hawaii-E34.Google Scholar
Folk, R.L. (1993). J. Sediment. Res. 63(5), 990999.Google Scholar
Grant, W.B. et al. (1994). J. Geophys. Res. 99(D4), 81978211.Google Scholar
Griffin, D.W. (2004). Aerobiologia 20, 135140.Google Scholar
Harris, M.J., Wickramasinghe, N.C., Lloyd, D., Narlikar, J.V., Rajaratnam, P., Turner, M.P., Al-Mufti, S., Wallis, M.K. & Hoyle, F. (2001). Proc. SPIE 4495, 192198.CrossRefGoogle Scholar
Hoover, R.B. (2009). Proc. SPIE 7441, 119.Google Scholar
Hoover, R.B., Hoyle, F., Wickramasinghe, N.C., Hoover, M.J. & Al-Mufti, S. (1999). Astrophys Space Sci. 268, 197.Google Scholar
Horneck, G. (1998). Adv. Space Res. 22(3), 317326.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1962). Mon. Not. Roy. Astron. Soc. 124(5), 417433.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1969). Nature 223(5205), 459462.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1976). Nature 264, 45.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1977). Nature 270, 323.Google Scholar
Hoyle, F & Wickramasinghe, N.C (1979). Astrophys. Space Sci. 66, 7790.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1991). The Theory of Cosmic Grains, p. 307. Kluwer Academic Press, Dordrecht.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life. Kluwer Academic Publishers, Dordrect.Google Scholar
Hoyle, F., Wickramasinghe, N.C. & Al-Mufti, S. (1982). Astrophys. Space Sci. 86(2), 341344.CrossRefGoogle Scholar
Hudson, B., Flynn, G.J., Fraundorf, P., Hohenberg, C.M. & Shirck, J. (1981). Science 211, 383386.Google Scholar
Imshenetsky, A.A. (1946). Mikrobiologiya 15, 422.Google Scholar
Imshenetsky, A.A., Lysenko, S.V. & Kazakov, G.A. (1978). Appl. Environ. Microbiol. 35, 15.CrossRefGoogle Scholar
Lal, S., Archarya, Y.B., Patra, P.K., Rajaratnam, P., Subbarya, B.H. & Venkataramani, S. (1996). Ind. J. Radio Space Phys. 25, 17.Google Scholar
Li, A. & Greenberg, J.M. (2003). Solid State Astrochem 120, 3784.CrossRefGoogle Scholar
Lopez-Amoros, R., Mason, D.J. & Lloyd, D. (1995). J. Microbiol. Meth. 22, 165.CrossRefGoogle Scholar
Lysenko, S.V. (1979). Mikrobiologiia 48, 10661074 (in Russian).Google Scholar
Mathis, J.S. (1993). Rep. Prog. Phys. 56, 605652.Google Scholar
Maurette, M., Olinger, C., Michel-Levy, C., Kurat, G., Pourchet, M., Braudstatter, M. & Bourot-Denise, M. (1991). Nature 351, 4447.CrossRefGoogle Scholar
McBride, E.F., Picard, M.D. & Folk, R.L. (1994). J. Sediment. Res. 64(3a), 535540.Google Scholar
McKay, D.S., Jr.Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Science 273(5277), 924930.Google Scholar
McKeegan, K.D., Walker, R.M. & Zinner, E. (1985). Geochem. Cosmochem. Acta 49, 19711987.Google Scholar
Messenger, S. (2000). Nature 404, 968971.CrossRefGoogle Scholar
Miyake, N. (2009). Laboratory studies of stratospheric dust – relevance to the theory of panspermia, PhD Thesis, Cardiff University.Google Scholar
Miyake, M., Wallis, M.K. & Wickramasinghe, N.C. (2009). Discovery in space Micro-dust: Siliceous fragments supporting the diatom hypothesis. EPSC abstract, vol. 4, EPSC2009-468.Google Scholar
Muthumariappan, C., Maheswar, G., Eswaraiah, C. & Pandey, A.K. (2008). A study of 2175°A absorption feature with TAUVEX: An Indo-Israeli UV mission. Organic Matter in Space, Proc. IAU Symposium No. 251.CrossRefGoogle Scholar
Narlikar, J.V., Ramadurai, S., Bhargava, P., Damle, S.V., Wickramasinghe, N.C., Lloyd, D., Hoyle, F. & Wallis, D.H. (1998). Proc. SPIE Conf. on Instruments, Methods and Mission for Astrobiology 3441, 301.Google Scholar
Narlikar, J.V. et al. (2003). Astrophys. Space Sci. 285(2), 555562.Google Scholar
Pasko, V.P., Stanley, M.A., Mathews, J.D., Inan, U.S. & Wood, T.G. (2002). Nature 416, 152154.CrossRefGoogle Scholar
Rauf, K. & Wickramasingh, C. (2010). Int. J. Astrobiol. 9(1), 2934.CrossRefGoogle Scholar
Rietmeijer, F.J.M. (2004). Adv. Space Res. 33(9), 14751480.CrossRefGoogle Scholar
Rohatschek, H. (1996). J. Aerosol. Sci. 27, 467475.Google Scholar
Sandford, S.A. (1996). Meteoritics Planet. Sci. 31, 44.Google Scholar
Secker, J., Wesson, P.S. & Lepock, J.R. (1994). Astrophys. Space Sci. 329, 1.Google Scholar
Smibert, R.M. & Kreis, N.R. (1994). Methods for General and Molecular Bacteriology. In ed. Gerherdt, P., Murray, R.G.E., Wood, W.R. & Kreig, N.R.Am. Soc. Microbiol., 603.Google Scholar
Stecher, T.P. (1965). Astrophys. J. 142, 1683.CrossRefGoogle Scholar
Stecher, T.P. & Donn, B. (1965). Ap. J. 142, 1681.CrossRefGoogle Scholar
Thomas, K.L., Blanford, G.E., Keller, L.P., Klock, W. & McKay, D.S. (1993). Geochim. Cosmochim. Acta 57, 15511566.Google Scholar
Wainwright, M., Alharbi, S. & Wickramasinghe, N.C. (2006). Int. J. Astrobiol. 5(1), 1315.Google Scholar
Wainwright, M., Weber, P.K., Smith, J.B., Hutcheon, I.D., Klyce, B., Wickramasinghe, N.C., Narlikar, J.V. & Rajaratnam, P. (2004a). Aerobiologia 20, 237240.Google Scholar
Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V. & Rajaratnam, P. (2003). FEMS Microbiol. Lett. 218, 161165.CrossRefGoogle Scholar
Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V., Rajaratnam, P. & Perkins, J. (2004b). Int. J. Astrobiol. 3(1), 1315.Google Scholar
Whisler, B.A. (1940). Iowa State Coll. J. Sci. 14, 215231.Google Scholar
Wickramasinghe, N.C. (1974). Nature 252, 462.Google Scholar
Wickramasinghe, N.C., Brooks, J. & Shaw, G. (1977). Nature 269, 674.CrossRefGoogle Scholar
Wickramasinghe, N.C., Hoyle, F. & Al-Jubory, T. (1989). Astrophys. Space Sci. 158, 135140.Google Scholar