Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T13:39:05.411Z Has data issue: false hasContentIssue false

Sampling methane in hydrothermal minerals on Earth and Mars

Published online by Cambridge University Press:  16 February 2012

Sean McMahon*
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK
John Parnell
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK
Nigel J. F. Blamey
Affiliation:
Department of Earth and Environmental Science, New Mexico Tech, Socorro, NM 87801, USA

Abstract

The source of Martian atmospheric methane is unknown. On Earth, hydrothermal mineral deposits contain ancient methane together with a host of chemical and geological lines of evidence for the mechanism of gas production. Such deposits are therefore potentially attractive sampling sites on Mars. In order to evaluate this potential, hydrothermal calcite veins were sampled across the Caithness region of Scotland and analysed for methane by an incremental-crushing mass spectrometry technique that may be adaptable to Mars rovers. Methane was detected in all samples. Variations in the quantity of methane released were found to relate directly to the geological history of the localities. Calcite particle size was found to affect measurements in a systematic and informative way. Oxidative weathering had no discernable effect on methane recoverability. These results suggest that the technique is sensitive and informative enough to deserve consideration for missions to Mars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C.C. & Oehler, D.Z. (2008). Astrobiology 8, 10931112.CrossRefGoogle Scholar
Blamey, N.J.F., Parnell, J. & Longerich, H.P. (2012). Understanding detection limits in fluid inclusion analysis using an incremental crush fast scan method for planetary science. In Proc. Lunar and Planetary Science Conf. XLIII, abstract 1035.Google Scholar
Chen, D., Wang, J., Qing, H., Yan, D. & Li, R. (2009). Chem. Geol. 258, 168181.CrossRefGoogle Scholar
Clark, B.C. (1998). J. Geophys. Res. 103, 2854528555.CrossRefGoogle Scholar
Davatzes, A. & Gulick, V. (2007). Evidence for tectonically controlled hydrothermal fluid flow in relay zones on Mars from early HiRISE images. In Proc. Lunar and Planetary Science Conf. XXXVIII, abstract 1788.Google Scholar
Donovan, R.N. (1975). J. Geol. Soc., Lond. 131, 489510.CrossRefGoogle Scholar
Fisk, M.R. & Giovannoni, S.J. (1999). J. Geophys. Res. 104, 1180511815.CrossRefGoogle Scholar
Fonti, S. & Marzo, G.A. (2010). Astron. Astrophys. 512, A51.CrossRefGoogle Scholar
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. (2004). Science 306, 17581761.CrossRefGoogle Scholar
Golden, D., Ming, D., Morris, R. & Graff, T. (2008). Am. Mineral. 93, 12011214.CrossRefGoogle Scholar
Goldstein, R.H. & Reynolds, T.J. (1994). Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM, Tulsa, Okla.CrossRefGoogle Scholar
Grady, M.M. & Wright, I. (2006). Phil. Trans. R. Soc. B: Biol. Sci. 361, 17031713.CrossRefGoogle Scholar
Hillier, D. & Marshall, J.E.A. (1992). J. Geol. Soc., Lond. 149, 491502.CrossRefGoogle Scholar
Horita, J. & Berndt, M.E. (1999). Science 285, 10551057.CrossRefGoogle Scholar
Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R. & Wolfe, R.S. (1983). Arch. Microbiol. 136, 254261.CrossRefGoogle Scholar
Lefèvre, F. & Forget, F. (2009). Nature 460, 720723.CrossRefGoogle Scholar
Lowell, R.P. & Rona, P.A. (2002). Geophys. Res. Lett. 29, 1531.CrossRefGoogle Scholar
Marshall, J., Brown, J. & Hindmarsh, S. (1985). Scot. J. Geol. 21, 301320.CrossRefGoogle Scholar
McCollom, T.M., Ritter, G. & Simoneit, B.R.T. (1999). Orig. Life Evol. Biosphere 29, 153166.CrossRefGoogle Scholar
McMahon, S., Parnell, J. & Blamey, N.J.F. (2012a). Analysis of volatile fluids in basalt: a possible source of Martian methane. In Proc. Lunar and Planetary Science Conf. XLIII, abstract 1046.Google Scholar
McMahon, S., Parnell, J., Burchell, M. & Blamey, N.J.F. (2012b). Methane retention by rocks following simulated meteorite impacts: implications for Mars. In Proc. Lunar and Planetary Science Conf. XLIII, abstract 1040.Google Scholar
Milodowski, A.E., Pearce, J.M. & Basham, I.R. (2000). The characterization, mineralogy and petrology of fractures and associated alteration in the Caithness Flagstone Group, Middle Old Red Sandstone, Caithness, northern Scotland. British Geological Survey Technical Report, WE/89/96.Google Scholar
Moore, J.N., Norman, D.I. & Kennedy, B.M. (2001). Chem. Geol. 173, 330.CrossRefGoogle Scholar
Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M. & Smith, M.D. (2009). Science 323, 10411045.CrossRefGoogle Scholar
Norman, D.I. & Blamey, N.J.F. (2001). Eur. Curr. Res. Fluid Inclusions XVI, 341344.Google Scholar
Norman, D.I. & Moore, J.N. (1997). Eur. Curr. Res. Fluid Inclusions XIV, 243244.Google Scholar
Parnell, J. & Rahman, M. (1990). Am. Assoc. Petrol. Geol. Bull. 74, 345351.Google Scholar
Parnell, J. & Baron, M. (2004). Int. J. Astrobiol. 3, 2130.CrossRefGoogle Scholar
Parnell, J., Boyce, A.J. & Blamey, N.J.F. (2010). Int. J. Astrobiol. 9, 193200.CrossRefGoogle Scholar
Parry, W.T. & Blamey, N.J.F. (2010). Chem. Geol. 278, 105119.CrossRefGoogle Scholar
Schulte, W., Widani, C., Hofmann, P., Bönke, T., Re, E. & Baglioni, P. (2008). Design and breadboarding of the sample preparation and distribution system of the ExoMars Mission. In Proc. Ninth International Symposium on Artificial Intelligence, Robotics and Automation in Space.Google Scholar
Schulze-Makuch, D., Dohm, J.M., Fan, C., Fairén, A.G., Rodriguez, J., Baker, V.R. & Fink, W. (2007). Icarus 189, 308324.CrossRefGoogle Scholar
Squyres, S. et al. . (2008). Science 320, 10631067.CrossRefGoogle Scholar
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R. & Rey, S.S. (2004). Nature 429, 542545.CrossRefGoogle Scholar
Trewin, N.H. (1986). Trans. R. Soc. Edinburgh 77, 2146.CrossRefGoogle Scholar