Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T21:39:09.829Z Has data issue: false hasContentIssue false

Robotic astrobiology – prospects for enhancing scientific productivity of mars rover missions

Published online by Cambridge University Press:  31 July 2017

A. A. Ellery*
Affiliation:
Department of Mechanical & Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada

Abstract

Robotic astrobiology involves the remote projection of intelligent capabilities to planetary missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii) continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return for astrobiology missions, but together, they will provide full autonomous science capability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, D., Schwantes, J., Kukkadapu, R., McDonald, B., Eiden, G. & Sweet, L. (2015). Real-time noise reduction for Mossbauer spectroscopy through online implementation of a modified Kalman filter. Nucl. Instrum. Methods Phys. Res. A773, 6671.Google Scholar
Bornstein, B., Castano, R., Gilmore, M., Merrill, M. & Greenwood, J. (2005). Creation and testing of an artificial neural network based carbonate detector for Mars rovers. In IEEE Aerospace Conf., Big Sky MT, USA. paper no. 1559330.Google Scholar
Casasent, D., Smokelin, J-S. & Ye, A. (1992). Wavelet and Gabor transforms for detection. Opt. Eng. 31(9), 18931898.Google Scholar
Castano, R., Mann, T. & Mjolsness, E. (1999). Texture analysis for Mars rover images. In Proc. SPIE Conf. on Applications of Digital Image Processing XXII 3808, pp. 162179. Denver, CO.Google Scholar
Castano, R., Estlin, T., Gaines, D., Castano, A., Chouinard, C., Bornstein, B., Anderson, R., Chien, S., Fukunaga, A. & Judd, M. (2006). Opportunistic rover science: finding and reacting to rocks, clouds and dust devils. In Proc. IEEE Aerospace Conf., paper no. 1656011.Google Scholar
Castano, R., Estlin, T., Anderson, R., Gaines, D., Castano, A., Bormstein, B., Chouinard, C. & Judd, M. (2007a). OASIS: onboard autonomous science investigation system for opportunistic rover science. J. Field Robot. 24(5), 379397.Google Scholar
Castano, R., Estlin, T., Gaines, D., Chouinard, C. & Bornstein, B. (2007b). Onboard autonomous rover science. In Proc. IEEE Aerospace Conf., Big Sky MT, USA, paper no. 1475.Google Scholar
Chaumette, F. & Hutchinson, S. (2006). Visual servo control part I: basic approaches. IEEE Robot. Autom. Mag. (Dec), 13, 8290.Google Scholar
Chaumette, F. & Hutchinson, S. (2007). Visual servo control part II: advanced approaches. IEEE Robot. Autom. Mag. (Mar), 14, 109118.Google Scholar
Chien, S., Bue, B., Castillo-Rogez, J., Gharibian, D., Knight, R., Schauffer, S., Thompson, D. & Wagstaff, K. (2014). Agile science: using onboard autonomy for primitive bodies and deep space exploration. In Proc. Int. Symp. on Artificial Intelligence Robotics & Automation in Space, Montreal, Canada, paper 11.Google Scholar
Chin, T. & Mariano, A. (1994). Wavelet-based compression of covariances in Kalman filtering of geophysical flows. In Proc. SPIE 2242 Wavelet Applications, Orlando FL, USA, pp. 842850.Google Scholar
Cooper, G. & Herskovits, E. (1992). Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309347.CrossRefGoogle Scholar
Cousins, C., Gunn, M., Prosser, B., Barnes, D., Crawford, I., Griffiths, A., Davis, L. & Coates, A. (2012). Selecting the geology filter wavelengths for the ExoMars Panoramic Camera instrument. Planet. Space Sci. 71, 80100.Google Scholar
Cross, G. & Jain, A. (1983). Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5(1), 2539.Google Scholar
Cross, M., Nicol, C., Qadi, A. & Ellery, A. (2013). Application of COTS components for Martian exploration. J. Br. Interplanet. Soc. 66(5/6), 161166.Google Scholar
Denzler, J. & Brown, C. (2002). Information theoretic sensor data selection for active object recognition and state estimation. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 145157.CrossRefGoogle Scholar
Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10, 732739.Google Scholar
Eddy, S. (2004). What is Bayesian statistics? Nat. Biotechnol. 22, 11771178.Google Scholar
Ellery, A. (2010). Selective snapshot of state-of-the-art artificial intelligence and robotics with reference to the Icarus starship. J. Br. Interplanet. Soc. 62, 427439.Google Scholar
Ellery, A. (2015). Artificial intelligence through symbolic connectionism – a biomimetic rapprochement. In Biomimetic Technologies: Principles & Applications, ed. Ngo, D. Elsevier Publishing Cambridge, UK, pp.227252.CrossRefGoogle Scholar
Ellery, A. (2016). Planetary Rovers: Robotic Exploration of the Solar System. Praxis-Springer Publishers, UK.Google Scholar
Ellery, A. & Wynn-Williams, D. (2003). Why Raman spectroscopy on Mars? A case of the right tool for the right job. Astrobiology 3(3), 565579.CrossRefGoogle Scholar
Ellery, A., Ball, A., Cockell, C., Dickensheets, D., Edwards, H., Kolb, C., Lammer, H., Patel, M. & Richter, L. (2004a). Vanguard – a European robotic astrobiology-focussed Mars sub-surface mission proposal. Acta Astron. 56(3), 397407.CrossRefGoogle Scholar
Ellery, A., Wynn-Williams, D., Parnell, J., Edwards, H. & Dickensheets, D. (2004b). The role of Raman spectroscopy as an astrobiological tool. J Raman Spectrosc. 35, 441457.Google Scholar
Ellery, A., Richter, L., Parnell, J. & Baker, A. (2006). Low cost approach to the exploration of Mars through a robotic technology demonstrator mission. Acta Astron. 59(8–11), 742749.Google Scholar
Fairen, A. & Schulze-Makuch, D. (2013). Overprotection of mars. Nat. Geosci. 6, 510511.Google Scholar
Fox, J., Castano, R. & Anderson, R. (2002). Onboard autonomous rock shape analysis for Mars rovers. Proc. IEEE Aerosp. Conf. 5, 20372052.Google Scholar
Gallant, M., Ellery, A. & Marshall, J. (2013). Rover-based autonomous science by probabilistic identification and evaluation. J. Intell. Robot. Syst. 72(3), 591613.CrossRefGoogle Scholar
Gao, Y., Ellery, A., Vincent, J., Eckersley, S. & Jaddou, M. (2007). Planetary micro-penetrator concept study with biomimetic drill and sampler design. IEEE Trans. Aerosp. Electron. Syst. 43(3), 875885.Google Scholar
Gao, Y., Frame, T. & Pitcher, C. (2015). Piercing the extraterrestrial surface: integrated robotic drill for planetary exoloration. IEEE Robot. Autom. Mag. (Mar), 22, 4553.Google Scholar
Glavin, P. et al. (2014). Organic molecules in the sheepbed mudstone, Gale crater, Mars. In 8th Int. Conf. on Mars Abstract, 1349.Google Scholar
Glymour, C. (2003). Learning, prediction and causal Bayes nets. Trends Cogn. Sci. 7(1), 4348.Google Scholar
Griffiths, A. & The Camera Team (2006). Context for the ExoMars rover: the panoramic camera (pancam) instrument. Int. J. Astrobiol. 5(3), 269275.Google Scholar
Grotzinger, J. & The MSL Science Team (2014). Habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777.Google Scholar
Gulick, V., Morris, R., Ruzon, M. & Roush, T. (2001). Autonomous image analyses during the 1999 Marsokhod rover field test. J. Geophys. Res. 106(E4), 77457763.Google Scholar
Hay, A., Samson, C. & Ellery, A. (2017). Robotic magnetic mapping with the Kapvik planetary micro-rover. submitted to Int. J. Astrobiol. (this issue).Google Scholar
Hecht, M., Kouvanes, S., Quinn, R., West, S., Young, S., Ming, D. & Catling, D. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix landing site. Science 325, 6467.Google Scholar
Heckerman, D., Geiger, D. & Chickering, D. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197243.Google Scholar
Henderson, J. (2003). Human gaze control during real world scene perception. Trends Cogn. Sci. 7(11), 498504.Google Scholar
Hewitt, R., Ellery, A. & de Ruiter, A. (2017). LIDAR classification using neural networks for planetary rover missions. Int. J. Adv. Robot. Syst. (in press).Google Scholar
Hurowitz, J., McLennan, S., Tosca, N., Arvidson, R., Michalski, J., Ming, D., Schroder, C. & Squyres, S. (2006). In situ evidence for acidic weathering of rocks and soils on Mars. J Geophys. Res. 111, E02S19.Google Scholar
Hutchinson, S., Hager, G. & Corke, P. (1996). Tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(1), 651670.Google Scholar
Itti, L., Koch, C. & Niebur, E. (1996). Model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 12541259.Google Scholar
Jacquin, A. (1993). Fractal image coding: a review. Proc. IEEE 81(10), 14511465.Google Scholar
Jain, A. & Farrokinia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24(12), 11671186.Google Scholar
Jerby, E., Dikhtayer, V., Aktushev, O. & Grosglick, U. (2002). Microwave drill. Science 298, 587589.Google Scholar
Jones, J. & Palmer, L. (1987). Evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 12331258.Google Scholar
Khatan, A. & Bhuiyan, A-A. (2011). Neural network-based face recognition with Gabor filters. Int. J. Comput. Sci. Netw. Sec. 11(1), 7176.Google Scholar
Kolb, C., Lammer, H., Ellery, A., Edwards, H., Cockell, C. & Patel, M. (2002). The Martian oxygen surface sink and its implications for the oxidant extinction depth. In Proc. 2nd European Workshop on Exo/Astrobiology ESA SP-518 (September 2002), Graz, Austria.Google Scholar
Kolb, C., Abart, R., Wappis, E., Penz, T., Lammer, H. & Jessberger, E. (2004). Meteoritic input on Mars – influence on organic geochemistry. In Proc. 3rd European Workshop on Exo-Astrobiology: Mars – the Search for Life (ESA SP-545), Madrid, Spain, pp. 225226.Google Scholar
Kostevelis, I., Boukas, E., Nalpanttidis, L. & Gasteratos, A. (2011). SPARTAN system: towards a low-cost and high-performance vision architecture for space exploratory rovers. In IEEE Int. Conf. on Computer Vision Workshops, Barcelona, Spain, 19942001.Google Scholar
Kwolek, B. (2015). Face detection using convolutional neural networks and Gabor filters. In Proc. 15th Int. Conf. on Artificial Neural Networks: Biological Inspirations 1, Warsaw, Poland, pp. 551556.Google Scholar
Lee, T. (1996). Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959971.Google Scholar
Liu, G., Liu, Y., Zhang, H., Gao, X., Yuan, J. & Zheng, W. (2015a). Kapvik robotic mast. IEEE Robot. Autom. Mag. (Mar), 22, 3444.Google Scholar
Liu, G., Lui, Y., Zhang, H., Gao, X., Yuan, J. & Zheng, W. (2015b). Kapvik robotic mast: an innovative robotic arm for planetary exploration rovers. IEEE Robot. Autom. Mag. 22(1), 3444.Google Scholar
Magnani, P., Re, E., Senese, S., Cherubini, G. & Olivieri, A. (2003). Different drill tool concepts. In Proc. 5th Int. Conf. on Low-Cost Planetary Missions, pp. 407411. ESTEC, Noordwijk, Netherlands (ESA SP-542).Google Scholar
Mallat, S. (1989). Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674693.Google Scholar
Materka, A. & Strzelcki, M. (1998). Texture analysis methods – a review. University of Lodz COST B11 Report, Institute of Electronics, Brussels.Google Scholar
Maugham, H., Birky, W., Nicholson, W., Rosenszeig, W. & Vreeland, R. (2002). Paradox of the ancient bacterium which contains modern protein-coding genes. Mol. Biol. Evol. 19(9), 16371639.Google Scholar
McGuire, P., Ormo, J., Martinez, E., Rodriguez, J., Elvira, J., Ritter, H., Oesker, M. & Ontrup, J. (2004). Cyborg astrobiologist: first field experience. Int. J. Astrobiol. 3, 189207.Google Scholar
Menon, C., Ayre, M. & Ellery, A. (2006). Biomimetics – a new approach to space systems design. ESA Bull. 125(Feb), 2126.Google Scholar
MEPAD Next Decade Science Analysis Group (2008). Science priorities for Mars sample return. Astrobiology 8(3), 489535.Google Scholar
Muller, H. & Krummenacher, J. (2006). Visual search and selective attention. Vis. Cognit. 14, 389410.Google Scholar
Navarro-Gonzalez, R., Vargas, E., de la Rosa, J., Raga, A. & McKay, C. (2010). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115(E1), 2010JE003599.Google Scholar
Nehmzow, U. & Neto, H. (2004). Novelty-based visual inspection using mobile robots. In Towards Autonomous Robotics Systems: Proc. 5th British Conf. on Mobile Robotics. Colchester, UK.Google Scholar
Neto, H. & Nehmzow, U. (2005). Incremental PCA: an alternative approach for novelty detection. In Proc. Towards Autonomous Robotic Systems, pp. 227233.Google Scholar
Nickle, D., Learn, G., Rain, M., Mullins, J. & Mittler, J. (2002). Curiously modern DNA for a 250 million year old bacterium. J. Mol. Evol. 54, 134137.Google Scholar
Parnell, J., Boyce, A. & Blamey, N. (2010). Follow the methane: the search for a deep biosphere and the case for sampling serpentinites on Mars. Int. J. Astrobiol. 9(4), 193200.Google Scholar
Penny, W. & Roberts, S. (1999). Bayesian neural networks for classification: how useful is the evidence framework? Neural Netw. 12, 877892.Google Scholar
Perron, T., Mitrovica, J., Manga, M., Matsuyama, I. & Richards, M. (2007). Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447, 840843.CrossRefGoogle ScholarPubMed
Qadi, A., Cloutis, E., Samson, C., Whyte, L., Ellery, A., Bell, J. III, Berard, G., Boivin, A. Haddad, E., Lavoie, J. et al. (2015). Mars methane analogue mission: mission simulation and rover operations at Jeffrey mine deployment. Adv. Space Res. 55(10), 24142426.Google Scholar
Randen, T. & Husay, J. (1999). Filtering for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291310.Google Scholar
Rioul, O. & Vetterli, M. (1991). Wavelets and signal processing. IEEE Signal Process. Mag. (Oct), 8, 1438.Google Scholar
Ross, J. & Ellery, A. (2017). Panoramic camera tracking on planetary rovers using feedforward control. Int. J. Adv. Robot. Syst. (in press).Google Scholar
Sahoolizadeh, H., Sarikhanimoghadam, D. & Dehghani, H. (2008). Face detection using Gabor wavelets and neural networks. Int. J Electr. Comput. Energ. Electron. Commun. Eng. 2(9), 18621864.Google Scholar
Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Netw. 61, 85117.Google Scholar
Schultze-Makuch, D., Dohm, J., Fan, C., Fairen, A., Rodriiguez, J., Baker, V. & Fink, W. (2007). Exploration of hydrothermal targets on Mars. Icarus 189, 308324.Google Scholar
Schwartz, D., Mancinelli, R. & Kaneshiro, E. (1992). Use of mineral crystals as biomarkers in the search for life on Mars. Adv. Space Res. 12(4), 41174119.Google Scholar
Sejnowski, T. & Rosenberg, C. (1987). Parallel networks that learn to pronounce English text. Complex Syst. 1, 145168.Google Scholar
Sengar, A. (2009). Colour texture classification using wavelet transform and neural network ensembles. Arab. J. Sci. Eng. 34(2B), 483498.Google Scholar
Setterfield, T. & Ellery, A. (2013). Terrain response estimation using an instrumented rocker-bogie mobility system. IEEE Trans. Robot. 29(1), 172188.Google Scholar
Setterfield, T., Ellery, A. & Frazier, C. (2014). Mechanical design and testing of an instrumented rocker-bogie mobility system for the Kapvik micro-rover. J. Br. Interplanet. Soc. 67, 96104.Google Scholar
Sharif, H., Samson, C. & Ellery, A. (2015) Autonomous rock classification using Bayesian image analysis for rover-based planetary exploration. Comput. Geosci. 83, 153167.Google Scholar
Smith, T., Thompson, D., Wettergreen, D., Cabrol, N., Warren-Rhodes, A. & Weinstein, S. (2007 ). Life in the Atacama: science autonomy for improving data quality. J. Geophys. Res. 112, G04S03.Google Scholar
Sprague, N. & Ballard, D. (2003). Eye movements for reward maximization. In Proc. 16th Int. Conf. on Neural Information Processing Systems, Istanbul, Turkey, pp. 14671474.Google Scholar
Srinivasan, M., Chahl, J., Weber, K., Ventakesh, S., Nagle, M. & Zhang, S. (1999). Robot navigation inspired by principles of insect vision. Robot. Autonom. Syst. 26, 203216.Google Scholar
Starc, J. & Querre, P. (2001). Multispectral data restoration by the wavelet Karhunen-Loeve transform. Signal Process. 81, 2449–2439.Google Scholar
Stoker, C. & Bullock, M. (1997). Organic degradation under simulated Martian conditions. J. Geophys. Res. – Planets 102(E5), 1088110888.Google Scholar
Taylor, B. & Darrah, M. (2005). Rule extraction as a formal method for the verification and validation of neural networks. In Proc. Int. Joint Conf. on Neural Networks, vol. 5, pp. 29152920.Google Scholar
Thompson, D. & Castano, R. (2007). Performance comparison of rock detection algorithms for autonomous planetary geology. In Proc. IEEE Aerospace Conf, Big Sky MT, USA, paper no. 352699.Google Scholar
Thompson, D., Niekum, S., Smith, T. & Wettergreen, D. (2005). Automatic detection and classification of features of geologic interest. In Proc. IEEE Aerospace Conf., Big Sky MT, USA, paper no. 1559329.Google Scholar
Thompson, D., Smith, T. & Wettergreen, D. (2008). Information-optimal selective data return for autonomous rover traverse science and survey. In Proc. IEEE Int Conf Robotics & Automation, Pasadena CA, USA, pp. 968973.Google Scholar
Thompson, D., Abbey, W., Allwood, A., Bekker, D., Bornstein, B., Cabrol, N., Castalio, R., Estlin, T., Fuchs, T. & Wagstaff, K. (2012). Smart cameras for remote science survey. In Proc. Int. Symp. on Artificial Intelligence Robotics & Automation in Space, Turin, Italy.Google Scholar
Torralba, A., Oliva, A., Castelhano, M. & Henderson, J. (2006). Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol. Rev. 113, 766786.Google Scholar
Usevitch, B. (2001). Tutorial on modern lossy wavelet image compression: foundations of JPEG 2000. IEEE Signal Process. Mag. (Sep), 18, 2235.Google Scholar
Vedaldi, A. & Fulkerson, B. (2010). VLFeat – an open and portable library of computer vision algorithms. In Proc. 18th ACM Int. Conf. Multimedia, Firenze, Italy, pp. 14691472.Google Scholar
Verschae, R. & Ruiz-del-Solar, J. (2015). Object detection: current and future directions. In Frontiers in Robotics & AI 2 (Novemebr), article 29.Google Scholar
Vetterli, M. & Herley, C. (1992). Wavelets and filter banks: theory and design. IEEE Trans. Signal Process. 40 (9), 22072232.CrossRefGoogle Scholar
Vreeland, R., Rosenzweig, W. & Powers, D. (2000). Isolation of a 250 million year old halotolerant bacterium from a primary salt crystal. Nature 407, 987–900.Google Scholar
Wagner, M., Apostolopoulos, D., Shillcutt, K., Shamah, B., Simmons, R. & Whittaker, W. (2001). Science autonomy system of the Nomad robot. In Proc. IEEE Int. Conf. on Robotics & Automation, Seoul, Korea, pp. 17421749.Google Scholar
Willersley, E. & Hebsgaard, M. (2005). New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crustal: comment and reply. Geology 33(1), e93.Google Scholar
Woods, M., Shaw, A., Barnes, D., Price, D., Long, D. & Pullan, D. (2009). Autonomous science for an ExoMars rover-like mission. J Field Robot. 26(4), 358390.Google Scholar
Zent, A. (1998). On the thickness of the oxidised layer of the Martian regolith. J. Geophys. Res. 103(E13), 3149131498.Google Scholar