Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T10:45:19.223Z Has data issue: false hasContentIssue false

Returning to Europa: can traces of surficial life be detected?

Published online by Cambridge University Press:  07 August 2008

J. Chela-Flores
Affiliation:
The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste, Italy Instituto de Estudios Avanzados, IDEA, Caracas 1015A, Venezuela e-mail: [email protected]
N. Kumar
Affiliation:
Raman Research Institute Bangalore-560080, India

Abstract

There is at present a possibility for returning to Europa with LAPLACE, a mission to Europa and the Jupiter System for European Space Agency's Cosmic Vision Programme. The question of habitability by the identification of reliable bio-indicators is a major priority. We explain the options for approaching the question of selecting the right instrumentation for measuring the more abundant sulphur isotope, in spite of the fact that 32S is isobaric (same m/z) with 16O2. Two technologies are available for investigating the possible biogenicity of the surficial sulphur on the icy patches discovered by the Galileo mission. We argue that there is a need to use higher-order statistics in the data that are to be gathered with the instruments chosen for the payload (ion-traps for orbital measurements, or penetrators for surficial measurements). In particular, we argue in favour of data analysis taken from an orbital spacecraft that addresses fluctuations of the data retrieved, rather than the mean. For this purpose, we reconsider the significance of deviations of sulphur abundances relative to normal (meteoritic) values. In the present work, we consider the experimentally testable possibility of biogenically driven isotopic anomalies in the light of statistical data analysis. The fluctuation test that is being proposed in the context of future missions to Europa may well be appropriate to a laboratory experiment with sulphur-reducing bacteria with the corresponding isotopic fractionation.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanc, M. & LAPLACE Consortium (2008). LAPLACE: a mission to Europa and the Jupiter System. Astrophysical Instruments and Methods, in press. See: http://www.ictp.it/~chelaf/ss186.htmlGoogle Scholar
Borghini, N., Dinh, P.M. & Ollitrault, J.-Y. (2001). Flow analysis from multiparticle azimuthal correlations. Phys. Rev. C 64, 054901-123.CrossRefGoogle Scholar
Carlson, R.W., Johnson, R.E. & Anderson, M.S. (1999). Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 9799.CrossRefGoogle ScholarPubMed
Chela-Flores, J. (1996). Habitability of Europa: possible degree of evolution of Europan biota. In Europa Ocean Conference at San Juan Capistrano Research Institute. San Juan Capistrano, CA, 12–14 November, 1996, pp. 2121a. See: http://www.ictp.it/~chelaf/ss29.html.Google Scholar
Chela-Flores, J. (2006). The sulphur dilemma: are there biosignatures on Europa's icy and patchy surface? Int. J. Astrobiol. 5, 1722. See: http://www.ictp.it/~chelaf/ss64.html.CrossRefGoogle Scholar
Chela-Flores, J. (2007). Testing the universality of biology. Int. J. Astrobiol. 6(3), 241248. See: http://www.ictp.it/~chelaf/ss116.html.Google Scholar
Chyba, C. (2000). Energy for microbial life on Europa, Nature 403, 381382.CrossRefGoogle ScholarPubMed
de Vera, J.P.P., Bartlett, S., Baticle, B., Bodendorfer, M., Byrne, P., Doule, O., Heydenreich, T.A., Johnsson, A., Magiopoulos, I., Martinez-Arnaiz, R.M. et al. (2008). EUROX (Europa Explorer): an astrobiology mission concept to the jovian icy moon Europa. Geophysical Research Abstracts, No. 10, EGU2008-A-01483, 2008, SRef-ID: 1607-7962/gra/EGU2008-A-01483Google Scholar
Doran, P.T., Stone, W., Priscu, J., McKay, C., Johnson, A. & Chen, B. (2007). Environmentally non-disturbing under-ice Robotic antarctic explorer (ENDURANCE). American Geophysical Union Fall Meeting, 2007, abstract #P52A-05.Google Scholar
Fagents, S.A. (2003). Considerations for the effusive cryovolcanism on Europa: the post-Galileo perspective. J. Geophys. Res. 108(E12), 5139.Google Scholar
Fanale, F.P., Granahan, J.C., McCord, T.B., Hansen, G., Hibbitts, C.A., Carlson, R., Matson, D., Ocampo, A., Kamp, L., Smythe, W. et al. (1999). Galileo's multiinstrument spectral view of Europa's surface composition. Icarus 139, 179188.CrossRefGoogle Scholar
Friedberg, E.C. (2002). The intersection between the birth of molecularbiology and the discovery of DNA repair, DNA Repair 1(10), 855867.CrossRefGoogle Scholar
Gerek, O.N. & Ece, D.G. (2006). Power-quality event analysis using higher order cumulants and quadratic classifiers. IEEE Trans. Power Delivery 21(2), 883889.CrossRefGoogle Scholar
Gowen, R.A., Smith, A., Crawford, I.A., Ball, A.J., Barber, S.J., Church, P., Gao, Y., Griffiths, A., Hagermann, A., Pike, W.T. et al. (2008). An update on the MoonLite lunar mission. Geophysical Research Abstracts, No. 10, EGU2008-A-08855, 2008, SRef-ID: 1607-7962/gra/EGU2008-A-08855.Google Scholar
Greenberg, R. (2005). Europa The Ocean Moon. Springer/Praxia Publishing, Chichester.Google Scholar
Hall, D.T.Strobel, D.F., Feldman, P.D., McGrath, M.A. & Weaver, H.A. (1995). Detection of an oxygen atmosphere on Jupiter's moon Europa. Nature 373, 677679.CrossRefGoogle ScholarPubMed
Horvath, J., Carsey, F., Cutts, J.Jones, J.Johnson, E., Landry, B., Lane, L., Lynch, G., Chela-Flores, J., Jeng, T-W. et al. (1997). Searching for ice and ocean biogenic activity on Europa and Earth. In Instruments, Methods and Missions for Investigation of Extraterrestrial Microorganisms, ed. Hoover, R.B., Proc. Soc. Photo. Opt. Instrum. Eng., 3111, 490500.CrossRefGoogle Scholar
Kaplan, I.R. (1975). Stable isotopes as a guide to biogeochemical processes. Proc. R. Soc. Lond. B 189, 183211.Google Scholar
Konhauser, K. (2007). Introduction to Geomicrobiology. pp. 320, 342343. Blackwell Publishing, Malden, MA.Google Scholar
Kruger, H., Krivov, A.V., Sremcevi, M. & Grün, E. (2003). Impact-generated dust clouds surrounding the Galilean moons. Icarus 164, 170187.CrossRefGoogle Scholar
Libby, (1971). Terrestrial and meteorite carbon appear to have the same isotopic composition. Proc. Natl. Acad. Sci. 68, 377.CrossRefGoogle ScholarPubMed
Luria, S.E. (1947). Reactivation of irradiated bacteriophage by transfer of self-reproducing units. Proc. Natl. Acad. Sci. USA 33, 253264.CrossRefGoogle ScholarPubMed
Luria, S. & Delbrück, M. (1943). Mutations of bacteria from virus sensitive to virus resistance. Genetics 28, 491511.CrossRefGoogle ScholarPubMed
McCord, T.B., Hansen, G.B., Clark, R.N., Martin, P.D., Hibbitts, C.A., Fanale, F.P., Granahan, J.C., Segura, N.M., Matson, D.L., Johnson, T.V. et al. (1998). Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. 103(E4), 86038626.CrossRefGoogle Scholar
Nanjundiah, V. (1999). Delbrück's publications in biology. Resonance J. Sci. Education 4(11), 3553.Google Scholar
NASA (2008). Executive Summary, 2007 Europa Explorer Mission Study: Final Report. See: http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=342.Google Scholar
Oró, J.Squyres, S.W., Reynolds, R.T. & Mills, T.M. (1992). Europa: prospects for an ocean and exobiological implications. In Exobiology in Solar System Exploration, eds Carle, G.C.,. Schwartz, D.E & Huntington, J.L., NASA SP-512, pp. 103125.Google Scholar
Schidlowski, M., Hayes, J.M. & Kaplan, I.R. (1983). Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In Earth's Earliest Biosphere its Origin and Evolution, ed. Schopf, J.W., pp. 149186. Princeton University Press, Princeton, NJ.Google Scholar
Schulze-Makuch, D. & Irwin, L.N. (2002). Energy cycling and hypothetical organisms in Europa's ocean. Astrobiology 2, 105121.CrossRefGoogle ScholarPubMed
Smith, A. & Gao, Y. (2007). Concepts and instruments for low-cost lunar surface Missions. Geophysical Research Abstracts, No. 9, 07927, 2007, SRef-ID: 1607-7962/gra/EGU2007-A-07927.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., Gellert, R., Morris, R.V., Ming, D.W., Crumpler, L, Farmer, J.D., Des Marais, D.J., Yen, A. et al. . (2008). Detection of silica-rich deposits on Mars. Science 320, 10631067.CrossRefGoogle ScholarPubMed
Taylor, E.A., Ball, A.J., Barber, S.J., Miljkovic, K., McBride, N., Sheridan, S., Wright, I.P., Zarnecki, J.C. & Hillier, J.K. (2007). A combined dust impact detector and ion trap mass spectrometer for a Europa orbiter. Geophysical Research Abstracts, No. 9, 10928, SRef-ID: 1607-7962/gra/EGU2007-A-10928.Google Scholar
Thomson, R.E. & Delaney, J.R. (2001). Evidence for a weakly stratified Europan ocean sustained by seafloor heat flux. J. Geophys. Res. 106(E6), 12 35512 365.CrossRefGoogle Scholar
Todd, J.F.J., Barber, S.J., Wright, I.P., Morgan, G.H., Morse, A.D., Sheridan, S., Leese, M.R., Maynard, J., Evans, S.T., Pillinger, C.T. et al. (2007). Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission. J. Mass Spectrom. 42, 110.CrossRefGoogle ScholarPubMed
Zolotov, M.Y. & Shock, E.L. (2003). On energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. J. Geophys. Res. 108(E4), 5022.Google Scholar