Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T09:07:26.362Z Has data issue: false hasContentIssue false

Propagation and energy deposition of cosmic rays’ muons on terrestrial environments

Published online by Cambridge University Press:  20 June 2014

Franciole Marinho*
Affiliation:
Universidade Federal do Rio de Janeiro, Av. Aluizio Gomes, 50, 27930-560, Macaé, RJ, Brazil
Laura Paulucci
Affiliation:
Universidade Federal do ABC, Rua Santa Adélia, 166, 09210-170, Santo André, SP, Brazil
Douglas Galante
Affiliation:
Brazilian Synchrotron Light Laboratory, National Center of Research in Energy and Materials, Campinas, SP, Brazil

Abstract

The Earth is constantly struck by radiation coming from the interstellar medium. The very low energy end of the spectrum is shielded by the geomagnetic field but charged particles with energies higher than the geomagnetic cutoff will penetrate the atmosphere and are likely to interact, giving rise to secondary particles. Some astrophysical events, such as γ-ray bursts and supernovae, when happening at short distances, may affect the planet's biosphere, due to the temporary enhanced radiation flux. Muons are abundantly produced by high-energy cosmic rays in the Earth's atmosphere. These particles, due to their low cross-section, are able to penetrate deep both underground and underwater, with the possibility of affecting biological niches normally considered shielded from radiation. We investigate the interaction of muons produced by high-energy cosmic rays on the Earth's atmosphere using the Geant4 toolkit. We analyse its penetration power in water and crust and also the interaction effects within bacteria-like material according to the particle type and energy, and noticed the possibility of off-track damage due to secondary particles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A.J. et al. (The Pierre Auger Collaboration) (2010). Phys. Lett. B 685, 239246.CrossRefGoogle Scholar
Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G. et al. (2003). Nucl. Instrum. Methods A 506(3), 250303.Google Scholar
Alpen, E.L. (1998). Radiation Biophysics. Academic Press, San Diego, CA.Google Scholar
Atri, D. & Mellot, A.L. (2011). Radiat. Phys. Chem. 80, 701.CrossRefGoogle Scholar
Atri, D., Mellot, A.L. & Karam, A. (2013). Int. J. Astrobiol. FirstView Article, 1.Google Scholar
Badhwar, G.D., Cucinotta, F.A. & Oneill, P.M. (1994). Radiat. Res. 138(2), 201208.Google Scholar
Beringer, J., Arguin, J.-F., Barnett, R.M., Copic, K., Dahl, O., Groom, D.E., Lin, C.-J., Lys, J., Murayama, H., Wohl, C.G. et al. (2012). Phys. Rev. D 86, 010001.Google Scholar
Daly, M.J. (2009). Nat. Rev. Microbiol. 7, 237245.Google Scholar
Daly, M.J., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M., Venkateswaran, A., Hess, M., Omelchenko, M.V., Kostandarithes, H.M., Makarova, K.S. et al. (2004). Science, 306, 10251028.Google Scholar
Dar, A., Laor, A. & Shaviv, N.J. (1998). Phys. Rev. Lett. 80(26), 58135816.Google Scholar
Dennis, B.R. (1985). Sol. Phys., 100(1), 465490.Google Scholar
Hiragi, Y. (1972). J. Gen. Microbiol. 72, 87.Google Scholar
Juckett, D.A. (2009). Int. J. Biometerol. 53, 6.Google Scholar
Karam, P.A. (1999). Health Phys. 77, 6.CrossRefGoogle Scholar
Karam, P.A. (2002a). Health Phys. 82, 4.Google Scholar
Karam, P.A. (2002b). Radiat. Phys. Chem. 64, 2.Google Scholar
Picone, J.M., Hedin, A.E., Drob, D.P. & Aikin, A.C. (2002). J. Geophys. Res. 107, SIA 15.Google Scholar
Porter, J.R. (1946). Bacterial Chemistry and Physiology. John Wiley and Sons, London.Google Scholar
Salton, M.R.J. (1964). The Bacterial Cell Wall. Elsevier, Amsterdam.Google Scholar
Terry, K.D. & Tucker, W.H. (1968). Science 159(3813), 421.Google Scholar
Thomas, B.C., Melott, A.L., Jackman, C.H., Laird, C.M., Medvedev, M.V., Stolarski, R.S., Gehrels, N., Cannizzo, J.K., Hogan, D.P. & Ejzak, L.M. (2005). Astrophys. J. 634, 509.CrossRefGoogle Scholar
Thorsett, S.E. (1995). Astrophys. J. 444, L53.Google Scholar
Yao, M.-W., Amsler, C., Asner, D., Barnett, R.M., Beringer, J., Burchat, P.R., Carone, C.D., Caso, C., Dahl, O., D'Ambrosio, G. et al. (2006). J. Phys. G 33, 245.Google Scholar