Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T15:06:19.464Z Has data issue: false hasContentIssue false

Planetary geodynamics and age constraints on circumstellar habitable zones around main sequence stars

Published online by Cambridge University Press:  14 March 2023

Fernando de Sousa Mello*
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP) – Rua do Matão, Cidade Universitária, 1226, CEP 05508-090 São Paulo, SP, Brazil
Amâncio César Santos Friaça
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP) – Rua do Matão, Cidade Universitária, 1226, CEP 05508-090 São Paulo, SP, Brazil
*
Author for correspondence: Fernando de Sousa Mello, E-mail: [email protected]

Abstract

Planetary geodynamics may have an important influence over planetary habitability and the boundaries of the circumstellar habitable zone (CHZ) in space and time. To investigate this we use a minimal parameterized model of the co-evolution of the geosphere and atmosphere of Earth-like planets around F, G, K and M main sequence stars. We found the CHZ for the present Solar System located between 0.92 and 1.09 au for a 1.0 M$_{\oplus }$ Earth-like planet, extendible to 1.36 au for a 4.0 M$_{\oplus }$ planet. In the literature, the CHZ varies considerably in width and border location, but the outer edges tend to be more spread out than the inner edges, showing a higher difficulty in determining the outer edge. Planetary mass has a considerable effect on planetary geodynamics, with low-mass planets cooling down faster and being less capable of maintaining a rich carbon dioxide atmosphere for several billions of years. Age plays a particularly important role in the width of the CHZ as the CHZ contracts in both directions: from the inner edge (as stellar luminosity increases with time), and from the outer edge (as planetary heat flux and seafloor spreading rate decrease with time). This strongly affects long-lived habitability as the 5 Gyr continuous CHZ may be very narrow or even non-existent for low-mass planets (<0.5 M$_{\oplus }$) and fast-evolving high-mass stars (>1.1 M$_{\odot }$). Because of this, the mean age of habitable terrestrial planets in our Galaxy today may be younger than Earth's age. Our results suggest that the best targets for future surveys of biosphere signatures may be planets between 0.5 and 4.0 M$_{\oplus }$, in systems younger than the Solar System. These planets may present the widest and long-lived CHZ.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, DS (2016) Analytical investigation of the decrease in the size of the habitable zone due to a limited CO2 outgassing rate. The Astrophysical Journal 827, 117.10.3847/0004-637X/827/2/117CrossRefGoogle ScholarPubMed
Abbot, DS and Switzer, ER (2011) The Steppenwolf: a proposal for a habitable planet in interstellar space. The Astrophysical Journal Letters 735, L27.10.1088/2041-8205/735/2/L27CrossRefGoogle Scholar
Abbot, DS, Cowan, NB and Ciesla, FJ (2012) Indication of insensitivity of planetary weathering behavior and habitable zone to surface land fraction. The Astrophysical Journal 756, 178.10.1088/0004-637X/756/2/178CrossRefGoogle Scholar
Abe, Y, Abe-Ouchi, A, Sleep, NH and Zahnle, KJ (2011) Habitable zone limits for dry planets. Astrobiology 11, 443460.10.1089/ast.2010.0545CrossRefGoogle ScholarPubMed
Arevalo, R Jr, McDonough, WF and Luong, M (2009) The k/u ratio of the silicate earth: insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters 278, 361369.10.1016/j.epsl.2008.12.023CrossRefGoogle Scholar
Armstrong, J, Barnes, R, Domagal-Goldman, S, Breiner, J, Quinn, T and Meadows, V (2014) Effects of extreme obliquity variations on the habitability of exoplanets. Astrobiology 14, 277291.10.1089/ast.2013.1129CrossRefGoogle ScholarPubMed
Arnscheidt, CW, Wordsworth, RD and Ding, F (2019) Atmospheric evolution on low-gravity waterworlds. The Astrophysical Journal 881, 60.10.3847/1538-4357/ab2bf2CrossRefGoogle Scholar
Baker, VR (2006) Geomorphological evidence for water on Mars. Elements 2, 139143.10.2113/gselements.2.3.139CrossRefGoogle Scholar
Baraffe, I, Chabrier, G, Allard, F and Hauschildt, P (1998) Evolutionary models for solar metallicity low-mass stars: mass–magnitude relationships and color–magnitude diagrams. arXiv preprint astro-ph/9805009.Google Scholar
Bell, EA, Boehnke, P, Harrison, TM and Mao, WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proceedings of the National Academy of Sciences 112, 1451814521.10.1073/pnas.1517557112CrossRefGoogle Scholar
Belousova, E, Kostitsyn, Y, Griffin, WL, Begg, GC, O'Reilly, SY and Pearson, NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119, 457466.10.1016/j.lithos.2010.07.024CrossRefGoogle Scholar
Biggin, AJ, Piispa, E, Pesonen, LJ, Holme, R, Paterson, G, Veikkolainen, T and Tauxe, L (2015) Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 526, 245248.10.1038/nature15523CrossRefGoogle ScholarPubMed
Blake, RE, Chang, SJ and Lepland, A (2010) Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 10291032.10.1038/nature08952CrossRefGoogle ScholarPubMed
Bolmont, E, Libert, A-S, Leconte, J and Selsis, F (2016) Habitability of planets on eccentric orbits: limits of the mean flux approximation. Astronomy & Astrophysics 591, A106.10.1051/0004-6361/201628073CrossRefGoogle Scholar
Bono, RK, Tarduno, JA, Nimmo, F and Cottrell, RD (2019) Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nature Geoscience 12, 143147.10.1038/s41561-018-0288-0CrossRefGoogle Scholar
Botelho, RB, Milone, A d. C, Meléndez, J, Bedell, M, Spina, L, Asplund, M, dos Santos, L, Bean, JL, Ramírez, I, Yong, D, Dreizler, S, Alves-Brito, A and Yana Galarza, J (2019) Thorium in solar twins: implications for habitability in rocky planets. Monthly Notices of the Royal Astronomical Society 482, 16901700.10.1093/mnras/sty2791CrossRefGoogle Scholar
Bounama, C (2007) Thermische Evolution und Habitabilität erdähnlicher Exoplaneten. PhD thesis, Universität Potsdam.Google Scholar
Bounama, C, Franck, S and Bloh, W v. (2001) The fate of earth's ocean. Hydrology and Earth System Sciences 5, 569576.10.5194/hess-5-569-2001CrossRefGoogle Scholar
Brady, PV and Gíslason, SR (1997) Seafloor weathering controls on atmospheric CO2 and global climate. Geochimica et Cosmochimica Acta 61, 965973.CrossRefGoogle Scholar
Buffett, BA (2000) Earth's core and the geodynamo. Science 288, 20072012.CrossRefGoogle ScholarPubMed
Caldeira, K (1995) Long-term control of atmospheric carbon dioxide; low-temperature seafloor alteration or terrestrial silicate-rock weathering?. American Journal of Science 295, 10771114.10.2475/ajs.295.9.1077CrossRefGoogle Scholar
Caldeira, K and Kasting, JF (1992) The life span of the biosphere revisited. Nature 360, 721723.10.1038/360721a0CrossRefGoogle ScholarPubMed
Catling, DC and Zahnle, KJ (2020) The Archean atmosphere. Science Advances 6, eaax1420.CrossRefGoogle ScholarPubMed
Cawley, J, Burruss, R and Holland, H (1969) Chemical weathering in central Iceland: an analog of pre-Silurian weathering. Science 165, 391392.CrossRefGoogle ScholarPubMed
Cerling, TE, Dearing, MD and Ehleringer, JR (2005) A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. New York: Springer.Google Scholar
Chamberlain, JW (1980) Changes in the planetary heat balance with chemical changes in air. Planetary and Space Science 28, 10111018.CrossRefGoogle Scholar
Chamberlain, TP and Hunten, DM (1990) Theory of Planetary Atmospheres: An Introduction to their Physics and Chemistry. San Diego: Academic Press.Google Scholar
Chambers, J (2020) The effect of seafloor weathering on planetary habitability. Preprint arXiv:2005.09092.CrossRefGoogle Scholar
Charnay, B, Le Hir, G, Fluteau, F, Forget, F and Catling, DC (2017) A warm or a cold early Earth? New insights from a 3-D climate-carbon model. Earth and Planetary Science Letters 474, 97109.CrossRefGoogle Scholar
Charnay, B, Wolf, ET, Marty, B and Forget, F (2020) Is the faint young Sun problem for earth solved? Preprint arXiv:2006.06265.Google Scholar
Colose, CM, Del Genio, AD and Way, MJ (2019) Enhanced habitability on high obliquity bodies near the outer edge of the habitable zone of Sun-like stars. The Astrophysical Journal 884, 138.10.3847/1538-4357/ab4131CrossRefGoogle Scholar
Condie, KC and Aster, RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Research 180, 227236.CrossRefGoogle Scholar
Conrad, CP and Hager, BH (1999a) Effects of plate bending and fault strength at subduction zones on plate dynamics. Journal of Geophysical Research: Solid Earth 104, 1755117571.CrossRefGoogle Scholar
Conrad, CP and Hager, BH (1999b) The thermal evolution of an earth with strong subduction zones. Geophysical Research Letters 26, 30413044.CrossRefGoogle Scholar
Cowan, NB and Abbot, DS (2014) Water cycling between ocean and mantle: super-Earths need not be waterworlds. The Astrophysical Journal 781, 27.10.1088/0004-637X/781/1/27CrossRefGoogle Scholar
Craddock, RA and Howard, AD (2002) The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research: Planets 107, 21–1.10.1029/2001JE001505CrossRefGoogle Scholar
Cuntz, M, von Bloh, W, Schröder, K-P, Bounama, C and Franck, S (2012) Habitability of super-Earth planets around main-sequence stars including red giant branch evolution: models based on the integrated system approach. International Journal of Astrobiology 11, 1523.CrossRefGoogle Scholar
Dai, Y-Z, Liu, H-G, An, D-S and Zhou, J-L (2021) Planet occurrence rate correlated to stellar dynamical history: Evidence from Kepler and Gaia. The Astronomical Journal 162, 46.CrossRefGoogle Scholar
de Wit, MJ and Furnes, H (2016) 3.5-ga hydrothermal fields and diamictites in the Barberton greenstone belt–Paleoarchean crust in cold environments. Science Advances 2, e1500368.CrossRefGoogle ScholarPubMed
Dhuime, B, Hawkesworth, CJ, Cawood, PA and Storey, CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335, 13341336.10.1126/science.1216066CrossRefGoogle ScholarPubMed
Di Achille, G and Hynek, BM (2010) Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience 3, 459463.CrossRefGoogle Scholar
Dobos, V, Charnoz, S, Pál, A, Roque-Bernard, A and Szabó, GM (2021) Survival of exomoons around exoplanets. Publications of the Astronomical Society of the Pacific 133, 094401.CrossRefGoogle Scholar
Dole, SH (1964) Habitable planets for man.Google Scholar
Donahue, TM (1999) New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226235.CrossRefGoogle Scholar
Dong, J, Fischer, RA, Stixrude, LP and Lithgow-Bertelloni, CR (2021) Constraining the volume of Earth's early oceans with a temperature-dependent mantle water storage capacity model. AGU Advances 2, e2020AV000323.10.1029/2020AV000323CrossRefGoogle Scholar
Dressing, CD, Spiegel, DS, Scharf, CA, Menou, K and Raymond, SN (2010) Habitable climates: the influence of eccentricity. The Astrophysical Journal 721, 1295.10.1088/0004-637X/721/2/1295CrossRefGoogle Scholar
Driese, SG, Jirsa, MA, Ren, M, Brantley, SL, Sheldon, ND, Parker, D and Schmitz, M (2011) Neoarchean Paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Research 189, 117.CrossRefGoogle Scholar
Driscoll, P (2019) Geodynamo recharged. Nature Geoscience 12, 8384.CrossRefGoogle Scholar
Dvorak, R, Pilat-Lohinger, E, Bois, E, Schwarz, R, Funk, B, Beichman, C, Danchi, W, Eiroa, C, Fridlund, M, Henning, T et al. (2010) Dynamical habitability of planetary systems. Astrobiology 10, 3343.10.1089/ast.2009.0379CrossRefGoogle ScholarPubMed
Elser, S, Moore, B, Stadel, J and Morishima, R (2011) How common are Earth–Moon planetary systems?. Icarus 214, 357365.10.1016/j.icarus.2011.05.025CrossRefGoogle Scholar
Ernst, RE, Bond, DP, Zhang, S -H, Buchan, KL, Grasby, SE, Youbi, N, El Bilali, H, Bekker, A and Doucet, LS (2021) Large igneous province record through time and implications for secular environmental changes and geological time-scale boundaries. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, pp. 1–26.10.1002/9781119507444.ch1CrossRefGoogle Scholar
Foley, BJ (2015) The role of plate tectonic–climate coupling and exposed land area in the development of habitable climates on rocky planets. The Astrophysical Journal 812, 36.CrossRefGoogle Scholar
Fortney, JJ, Marley, MS and Barnes, JW (2007) Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. The Astrophysical Journal 659, 1661.CrossRefGoogle Scholar
Franck, S and Bounama, C (1995) Effects of water-dependent creep rate on the volatile exchange between mantle and surface reservoirs. Physics of the Earth and planetary interiors 92, 5765.CrossRefGoogle Scholar
Franck, S, Kossacki, K and Bounama, C (1999) Modelling the global carbon cycle for the past and future evolution of the Earth system. Chemical Geology 159, 305317.CrossRefGoogle Scholar
Franck, S, Block, A, Von Bloh, W, Bounama, C, Schellnhuber, H-J and Svirezhev, Y (2000a) Habitable zone for Earth-like planets in the Solar System. Planetary and Space Science 48, 10991105.CrossRefGoogle Scholar
Franck, S, Block, A, Von Bloh, W, Bounama, C, Schellnhuber, H and Svirezhev, Y (2000b) Reduction of biosphere life span as a consequence of geodynamics. Tellus B 52, 94107.10.3402/tellusb.v52i1.16085CrossRefGoogle Scholar
Franck, S, Von Bloh, W, Bounama, C, Steffen, M, Schönberner, D and Schellnhuber, H (2001) Limits of photosynthesis in extrasolar planetary systems for Earth-like planets. Advances in Space Research 28, 695700.10.1016/S0273-1177(01)00328-3CrossRefGoogle ScholarPubMed
Franck, S, Kossacki, KJ, Von Bloth, W and Bounama, C (2002) Long-term evolution of the global carbon cycle: historic minimum of global surface temperature at present. Tellus B: Chemical and Physical Meteorology 54, 325343.10.3402/tellusb.v54i4.16669CrossRefGoogle Scholar
Franck, S, Bounama, C and von Bloh, W (2004) On the habitability of Earth and Mars. Proceedings of the Third European Workshop on Exo-Astrobiology, 18–20 November 2003 54, 205206.Google Scholar
Franck, S, Bounama, C and Bloh, W v. (2006) Causes and timing of future biosphere extinctions. Biogeosciences (Online) 3, 8592.CrossRefGoogle Scholar
Geboy, NJ, Kaufman, AJ, Walker, RJ, Misi, A, de Oliviera, TF, Miller, KE, Azmy, K, Kendall, B and Poulton, SW (2013) Re–Os age constraints and new observations of Proterozoic glacial deposits in the Vazante group, Brazil. Precambrian Research 238, 199213.10.1016/j.precamres.2013.10.010CrossRefGoogle Scholar
Goldblatt, C (2015) Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres. Astrobiology 15, 362370.CrossRefGoogle ScholarPubMed
Goldblatt, C and Zahnle, K (2010) Clouds and the faint young Sun paradox. Climate of the Past Discussions 6, 744747.Google Scholar
Gómez-Leal, I, Kaltenegger, L, Lucarini, V and Lunkeit, F (2019) Climate sensitivity to ozone and its relevance on the habitability of Earth-like planets. Icarus 321, 608618.10.1016/j.icarus.2018.11.019CrossRefGoogle Scholar
Gonzalez, G (2005) Habitable zones in the Universe. Origins of Life and Evolution of Biospheres 35, 555606.CrossRefGoogle ScholarPubMed
Gonzalez, G, Brownlee, D and Ward, P (2001) The Galactic habitable zone: Galactic chemical evolution. Icarus 152, 185200.10.1006/icar.2001.6617CrossRefGoogle Scholar
Guo, J, Zhang, F, Chen, X and Han, Z (2009) Probability distribution of terrestrial planets in habitable zones around host stars. Astrophysics and Space Science 323, 367373.10.1007/s10509-009-0081-zCrossRefGoogle Scholar
Guzmán-Marmolejo, A, Segura, A and Escobar-Briones, E (2013) Abiotic production of methane in terrestrial planets. Astrobiology 13, 550559.10.1089/ast.2012.0817CrossRefGoogle ScholarPubMed
Haqq-Misra, JD, Domagal-Goldman, SD, Kasting, PJ and Kasting, JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 11271137.10.1089/ast.2007.0197CrossRefGoogle ScholarPubMed
Haqq-Misra, J, Kopparapu, RK, Batalha, NE, Harman, CE and Kasting, JF (2016) Limit cycles can reduce the width of the habitable zone. The Astrophysical Journal 827, 120.10.3847/0004-637X/827/2/120CrossRefGoogle ScholarPubMed
Hart, MH (1978) The evolution of the atmosphere of the Earth. Icarus 33, 2339.CrossRefGoogle Scholar
Hart, MH (1979) Habitable zones about main sequence stars. Icarus 37, 351357.CrossRefGoogle Scholar
Hawkesworth, CJ, Cawood, PA and Dhuime, B (2016) Tectonics and crustal evolution. GSA Today.10.1130/GSATG272A.1CrossRefGoogle Scholar
Heller, R, Leconte, J and Barnes, R (2011) Tidal obliquity evolution of potentially habitable planets. Astronomy & Astrophysics 528, A27.CrossRefGoogle Scholar
Hessler, AM, Lowe, DR, Jones, RL and Bird, DK (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428, 736738.CrossRefGoogle ScholarPubMed
Hirschmann, MM (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems 1, 000070.CrossRefGoogle Scholar
Hren, M, Tice, M and Chamberlain, C (2009) Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462, 205208.CrossRefGoogle ScholarPubMed
Hurley, JR, Pols, OR and Tout, CA (2000) Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Monthly Notices of the Royal Astronomical Society 315, 543569.CrossRefGoogle Scholar
Jackson, TA and Keller, WD (1970) A comparative study of the role of lichens and ‘inorganic’ processes in the chemical weathering of recent Hawaiian lava flows. American Journal of Science 269, 446466.10.2475/ajs.269.5.446CrossRefGoogle Scholar
Kadoya, S and Tajika, E (2014) Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO2 degassing. The Astrophysical Journal 790, 107.CrossRefGoogle Scholar
Kadoya, S and Tajika, E (2015) Evolutionary climate tracks of Earth-like planets. The Astrophysical Journal Letters 815, L7.CrossRefGoogle Scholar
Kadoya, S, Krissansen-Totton, J and Catling, DC (2020) Probable cold and alkaline surface environment of the Hadean Earth caused by impact ejecta weathering. Geochemistry, Geophysics, Geosystems 21, e2019GC008734.CrossRefGoogle Scholar
Kah, LC and Riding, R (2007) Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology 35, 799802.CrossRefGoogle Scholar
Kane, SR, Kopparapu, RK and Domagal-Goldman, SD (2014) On the frequency of potential Venus analogs from Kepler data. The Astrophysical Journal Letters 794, L5.CrossRefGoogle Scholar
Kanzaki, Y and Murakami, T (2015) Estimates of atmospheric CO2 in the Neoarchean–Paleoproterozoic from paleosols. Geochimica et Cosmochimica Acta 159, 190219.CrossRefGoogle Scholar
Kasting, JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472494.CrossRefGoogle ScholarPubMed
Kasting, JF (1991) CO2 condensation and the climate of early Mars. Icarus 94, 113.CrossRefGoogle ScholarPubMed
Kasting, JF (2005) Methane and climate during the Precambrian era. Precambrian Research 137, 119129.CrossRefGoogle Scholar
Kasting, JF (2019) The Goldilocks planet? How silicate weathering maintains Earth ‘just right’. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology 15, 235240.CrossRefGoogle Scholar
Kasting, JF and Ackerman, TP (1986) Climatic consequences of very high carbon dioxide levels in the Earth's early atmosphere. Science 234, 13831385.10.1126/science.11539665CrossRefGoogle ScholarPubMed
Kasting, JF, Whitmire, DP and Reynolds, RT (1993) Habitable zones around main sequence stars. Icarus 101, 108128.CrossRefGoogle ScholarPubMed
Kaufman, AJ and Xiao, S (2003) High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425, 279282.CrossRefGoogle ScholarPubMed
Kharecha, P, Kasting, J and Siefert, J (2005) A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 5376.CrossRefGoogle Scholar
Kilic, C, Raible, C and Stocker, T (2017) Multiple climate states of habitable exoplanets: the role of obliquity and irradiance. The Astrophysical Journal 844, 147.CrossRefGoogle Scholar
Kite, ES and Ford, EB (2018) Habitability of exoplanet waterworlds. The Astrophysical Journal 864, 75.CrossRefGoogle Scholar
Kite, ES, Manga, M and Gaidos, E (2009) Geodynamics and rate of volcanism on massive Earth-like planets. The Astrophysical Journal 700, 1732.CrossRefGoogle Scholar
Kodama, T, Nitta, A, Genda, H, Takao, Y, O'ishi, R, Abe-Ouchi, A and Abe, Y (2018) Dependence of the onset of the runaway greenhouse effect on the latitudinal surface water distribution of Earth-like planets. Journal of Geophysical Research: Planets 123, 559574.10.1002/2017JE005383CrossRefGoogle Scholar
Konôpková, Z, McWilliams, RS, Gómez-Pérez, N and Goncharov, AF (2016) Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99101.CrossRefGoogle ScholarPubMed
Kopparapu, RK, Ramirez, R, Kasting, JF, Eymet, V, Robinson, TD, Mahadevan, S, Terrien, RC, Domagal-Goldman, S, Meadows, V and Deshpande, R (2013) Habitable zones around main-sequence stars: new estimates. The Astrophysical Journal 765, 131.CrossRefGoogle Scholar
Kopparapu, RK, Ramirez, RM, SchottelKotte, J, Kasting, JF, Domagal-Goldman, S and Eymet, V (2014) Habitable zones around main-sequence stars: dependence on planetary mass. The Astrophysical Journal Letters 787, L29.CrossRefGoogle Scholar
Korenaga, J (2006) Archean geodynamics and the thermal evolution of Earth. Geophysical Monograph-American Geophysical Union 164, 7.Google Scholar
Korenaga, J (2008) Urey ratio and the structure and evolution of Earth's mantle. Reviews of Geophysics 46, 00241.CrossRefGoogle Scholar
Krissansen-Totton, J and Catling, DC (2017) Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nature Communications 8, 115.CrossRefGoogle ScholarPubMed
Krissansen-Totton, J, Olson, S and Catling, DC (2018a) Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Science Advances 4, eaao5747.CrossRefGoogle ScholarPubMed
Krissansen-Totton, J, Arney, GN and Catling, DC (2018b) Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proceedings of the National Academy of Sciences 115, 41054110.CrossRefGoogle ScholarPubMed
Kuipers, G, Beunk, FF and van der Wateren, FM (2013) Periglacial evidence for a 1.91–1.89 ga old glacial period at low latitude, central Sweden. Geology Today 29, 218221.CrossRefGoogle Scholar
Kulikov, YN, Lammer, H, Lichtenegger, H, Terada, N, Ribas, I, Kolb, C, Langmayr, D, Lundin, R, Guinan, E, Barabash, S et al. (2006) Atmospheric and water loss from early Venus. Planetary and Space Science 54, 14251444.CrossRefGoogle Scholar
Kump, LR, Brantley, SL and Arthur, MA (2000) Chemical weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Sciences 28, 611667.CrossRefGoogle Scholar
Kunimoto, M and Matthews, JM (2020) Searching the entirety of Kepler data. II. Occurrence rate estimates for FGK stars. The Astronomical Journal 159, 248.CrossRefGoogle Scholar
Labrosse, S and Jaupart, C (2007) Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth and Planetary Science Letters 260, 465481.CrossRefGoogle Scholar
Labrosse, S, Poirier, J-P and Le Mouël, J-L (2001) The age of the inner core. Earth and Planetary Science Letters 190, 111123.10.1016/S0012-821X(01)00387-9CrossRefGoogle Scholar
Laskar, J, Joutel, F and Robutel, P (1993) Stabilization of the Earth's obliquity by the Moon. Nature 361, 615617.CrossRefGoogle Scholar
Leconte, J, Forget, F, Charnay, B, Wordsworth, R and Pottier, A (2013) Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268271.CrossRefGoogle ScholarPubMed
Le Hir, G, Ramstein, G, Donnadieu, Y and Goddéris, Y (2008) Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology 36, 4750.CrossRefGoogle Scholar
Le Hir, G, Donnadieu, Y, Goddéris, Y, Pierrehumbert, RT, Halverson, GP, Macouin, M, Nédélec, A and Ramstein, G (2009) The snowball Earth aftermath: exploring the limits of continental weathering processes. Earth and Planetary Science Letters 277, 453463.CrossRefGoogle Scholar
Lenardic, A and Crowley, JW (2012) On the notion of well-defined tectonic regimes for terrestrial planets in this Solar System and others. The Astrophysical Journal 755, 132.10.1088/0004-637X/755/2/132CrossRefGoogle Scholar
Lenton, TM (2000) Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus B: Chemical and Physical Meteorology 52, 11591188.CrossRefGoogle Scholar
Lenton, TM and von Bloh, W (2001) Biotic feedback extends the life span of the biosphere. Geophysical Research Letters 28, 17151718.CrossRefGoogle Scholar
Lewis, JS and Grinspoon, DH (1990) Vertical distribution of water in the atmosphere of Venus: a simple thermochemical explanation. Science 249, 12731275.CrossRefGoogle Scholar
Lineweaver, CH (2001) An estimate of the age distribution of terrestrial planets in the Universe: quantifying metallicity as a selection effect. Icarus 151, 307313.CrossRefGoogle Scholar
Lineweaver, CH, Fenner, Y and Gibson, BK (2004) The Galactic habitable zone and the age distribution of complex life in the Milky Way. Science 303, 5962.CrossRefGoogle ScholarPubMed
Linsenmeier, M, Pascale, S and Lucarini, V (2015) Climate of Earth-like planets with high obliquity and eccentric orbits: implications for habitability conditions. Planetary and Space Science 105, 4359.CrossRefGoogle Scholar
Lissauer, JJ, Barnes, JW and Chambers, JE (2012) Obliquity variations of a moonless Earth. Icarus 217, 7787.CrossRefGoogle Scholar
Lovelock, JE and Margulis, L (1974) Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26, 210.CrossRefGoogle Scholar
Lovelock, JE and Whitfield, M (1982) Life span of the biosphere. Nature 296, 561563.CrossRefGoogle Scholar
Macfarling Meure, C, Etheridge, D, Trudinger, C, Steele, P, Langenfelds, R, Van Ommen, T, Smith, A and Elkins, J (2006) Law dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters 33, 026152.CrossRefGoogle Scholar
Mahaffy, P, Webster, C, Stern, J, Brunner, A, Atreya, S, Conrad, P, Domagal-Goldman, S, Eigenbrode, J, Flesch, GJ, Christensen, LE et al. (2015) The imprint of atmospheric evolution in the D/H of hesperian clay minerals on Mars. Science 347, 412414.10.1126/science.1260291CrossRefGoogle Scholar
McGovern, PJ and Schubert, G (1989) Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth and Planetary Science Letters 96, 2737.CrossRefGoogle Scholar
Mckenzie, D and Bickle, M (1988) The volume and composition of melt generated by extension of the lithosphere. Journal of petrology 29, 625679.CrossRefGoogle Scholar
Mello, F d. S and Friaça, ACS (2020) The end of life on Earth is not the end of the world: converging to an estimate of life span of the biosphere?. International Journal of Astrobiology 19, 2542.CrossRefGoogle Scholar
Méndez, A, Rivera-Valentín, EG, Schulze-Makuch, D, Filiberto, J, Ramírez, RM, Wood, TE, Dávila, A, McKay, C, Ceballos, KNO, Jusino-Maldonado, M et al. (2021) Habitability models for astrobiology. Astrobiology 21, 10171027.CrossRefGoogle ScholarPubMed
Menou, K (2015) Climate stability of habitable Earth-like planets. Earth and Planetary Science Letters 429, 2024.CrossRefGoogle Scholar
Monnereau, M, Calvet, M, Margerin, L and Souriau, A (2010) Lopsided growth of Earth's inner core. Science 328, 10141017.CrossRefGoogle ScholarPubMed
Mora, CI, Driese, SG and Colarusso, LA (1996) Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271, 11051107.CrossRefGoogle Scholar
Mowlavi, N, Eggenberger, P, Meynet, G, Ekström, S, Georgy, C, Maeder, A, Charbonnel, C and Eyer, L (2012) Stellar mass and age determinations-I. Grids of stellar models from Z = 0.006 to 0.04 and M = 0.5 to 3.5 M$_{\odot }$. Astronomy & Astrophysics 541, A41.CrossRefGoogle Scholar
Nimmo, F and McKenzie, D (1998) Volcanism and tectonics on Venus. Annual Review of Earth and Planetary Sciences 26, 2351.CrossRefGoogle Scholar
Nimmo, F, Primack, J, Faber, SM, Ramirez-Ruiz, E and Safarzadeh, M (2020) Radiogenic heating and its influence on rocky planet dynamos and habitability. The Astrophysical Journal Letters 903, L37.CrossRefGoogle Scholar
Noffke, N, Christian, D, Wacey, D and Hazen, RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology 13, 11031124.CrossRefGoogle ScholarPubMed
Ohmoto, H, Watanabe, Y and Kumazawa, K (2004) Evidence from massive siderite beds for a CO2-rich atmosphere before 1.8 billion years ago. Nature 429, 395399.10.1038/nature02573CrossRefGoogle ScholarPubMed
Ohta, K, Kuwayama, Y, Hirose, K, Shimizu, K and Ohishi, Y (2016) Experimental determination of the electrical resistivity of iron at Earth's core conditions. Nature 534, 9598.CrossRefGoogle ScholarPubMed
Ojakangas, RW, Srinivasan, R, Hegde, V, Chandrakant, S and Srikantia, S (2014) The Talya conglomerate: an Archean (2.7 ga) glaciomarine formation, Western Dharwar Craton, southern India. Current Science 106, 387396.Google Scholar
Olson, SL, Reinhard, CT and Lyons, TW (2016) Limited role for methane in the mid-Proterozoic greenhouse. Proceedings of the National Academy of Sciences 113, 1144711452.CrossRefGoogle ScholarPubMed
O'Malley-James, JT, Greaves, JS, Raven, JA and Cockell, CS (2013) Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology 12, 99112.CrossRefGoogle Scholar
O'Neill, C, Jellinek, A and Lenardic, A (2007) Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth and Planetary Science Letters 261, 2032.CrossRefGoogle Scholar
Ozaki, K and Reinhard, CT (2021) The future lifespan of Earth's oxygenated atmosphere. Nature Geoscience 14, 138142.CrossRefGoogle Scholar
Ozaki, K, Tajika, E, Hong, PK, Nakagawa, Y and Reinhard, CT (2018) Effects of primitive photosynthesis on Earth's early climate system. Nature Geoscience 11, 5559.CrossRefGoogle Scholar
Pahlevan, K, Schaefer, L, Elkins-Tanton, LT, Desch, SJ and Buseck, PR (2022) A primordial atmospheric origin of hydrospheric deuterium enrichment on Mars. Earth and Planetary Science Letters 595, 117772.CrossRefGoogle Scholar
Pavlov, AA, Kasting, JF, Brown, LL, Rages, KA and Freedman, R (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. Journal of Geophysical Research: Planets 105, 1198111990.CrossRefGoogle ScholarPubMed
Pavlov, AA, Hurtgen, MT, Kasting, JF and Arthur, MA (2003) Methane-rich Proterozoic atmosphere?. Geology 31, 8790.2.0.CO;2>CrossRefGoogle Scholar
Pierrehumbert, R and Gaidos, E (2011) Hydrogen greenhouse planets beyond the habitable zone. The Astrophysical Journal Letters 734, L13.CrossRefGoogle Scholar
Pope, EC, Bird, DK and Rosing, MT (2012) Isotope composition and volume of Earth's early oceans. Proceedings of the National Academy of Sciences 109, 43714376.CrossRefGoogle ScholarPubMed
Ramirez, RM and Kaltenegger, L (2017) A volcanic hydrogen habitable zone. The Astrophysical Journal Letters 837, L4.CrossRefGoogle Scholar
Ramirez, RM, Kopparapu, R, Zugger, ME, Robinson, TD, Freedman, R and Kasting, JF (2014) Warming early Mars with CO2 and H2. Nature Geoscience 7, 5963.CrossRefGoogle Scholar
Rasool, SI and de Bergh, C (1970) The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature 226, 10371039.CrossRefGoogle ScholarPubMed
Ribas, I, Guinan, EF, Güdel, M and Audard, M (2005) Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). The Astrophysical Journal 622, 680.CrossRefGoogle Scholar
Rosing, MT, Bird, DK, Sleep, NH and Bjerrum, CJ (2010) No climate paradox under the faint early Sun. Nature 464, 744747.CrossRefGoogle ScholarPubMed
Rushby, AJ, Claire, MW, Osborn, H and Watson, AJ (2013) Habitable zone lifetimes of exoplanets around main sequence stars. Astrobiology 13, 833849.CrossRefGoogle ScholarPubMed
Rye, R, Kuo, PH and Holland, HD (1995) Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378, 603605.CrossRefGoogle ScholarPubMed
Sauterey, B, Charnay, B, Affholder, A, Mazevet, S and Ferrière, R (2020) Co-evolution of primitive methane-cycling ecosystems and early Earth's atmosphere and climate. Nature Communications 11, 112.CrossRefGoogle ScholarPubMed
Schröder, K-P and Connon Smith, R (2008) Distant future of the Sun and Earth revisited. Monthly Notices of the Royal Astronomical Society 386, 155163.CrossRefGoogle Scholar
Schwartzman, D (1999) Life, Temperature, and the Earth: The Self-organizing Biosphere. New York: Columbia University Press.Google Scholar
Schwartzman, DW and Volk, T (1989) Biotic enhancement of weathering and the habitability of Earth. Nature 340, 457460.CrossRefGoogle Scholar
Schwartzman, DW and Volk, T (1991) Biotic enhancement of weathering and surface temperatures on Earth since the origin of life. Global and Planetary Change 4, 357371.CrossRefGoogle Scholar
Schwieterman, EW, Reinhard, CT, Olson, SL, Harman, CE and Lyons, TW (2019) A limited habitable zone for complex life. The Astrophysical Journal 878, 19.CrossRefGoogle Scholar
Selsis, F, Kasting, JF, Levrard, B, Paillet, J, Ribas, I and Delfosse, X (2007) Habitable planets around the star Gliese 581?. Astronomy & Astrophysics 476, 13731387.CrossRefGoogle Scholar
Sheldon, ND (2006) Precambrian paleosols and atmospheric CO2 levels. Precambrian Research 147, 148155.CrossRefGoogle Scholar
Sleep, NH and Zahnle, K (2001) Carbon dioxide cycling and implications for climate on ancient Earth. Journal of Geophysical Research: Planets 106, 13731399.CrossRefGoogle Scholar
Smirnov, AV, Tarduno, JA and Evans, DA (2011) Evolving core conditions ca. 2 billion years ago detected by paleosecular variation. Physics of the Earth and Planetary Interiors 187, 225231.CrossRefGoogle Scholar
Sotin, C, Grasset, O and Mocquet, A (2007) Mass–radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191, 337351.CrossRefGoogle Scholar
Spiegel, DS, Menou, K and Scharf, CA (2009) Habitable climates: the influence of obliquity. The Astrophysical Journal 691, 596.CrossRefGoogle Scholar
Spiegel, DS, Raymond, SN, Dressing, CD, Scharf, CA and Mitchell, JL (2010) Generalized Milankovitch cycles and long-term climatic habitability. The Astrophysical Journal 721, 1308.CrossRefGoogle Scholar
Stacey, FD and Stacey, CH (1999) Gravitational energy of core evolution: implications for thermal history and geodynamo power. Physics of the Earth and Planetary Interiors 110, 8393.CrossRefGoogle Scholar
Stadelmann, A, Vogt, J, Glassmeier, K-H, Kallenrode, M-B and Voigt, G-H (2010) Cosmic ray and solar energetic particle flux in paleomagnetospheres. Earth, Planets and Space 62, 333345.CrossRefGoogle Scholar
Stevenson, DJ (1999) Life-sustaining planets in interstellar space?. Nature 400, 3232.10.1038/21811CrossRefGoogle ScholarPubMed
Straume, EO, Gaina, C, Medvedev, S, Hochmuth, K, Gohl, K, Whittaker, JM, Abdul Fattah, R, Doornenbal, JC and Hopper, JR (2019) Globsed: updated total sediment thickness in the world's oceans. Geochemistry, Geophysics, Geosystems 20, 17561772.CrossRefGoogle Scholar
Tajika, E (2003) Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth and Planetary Science Letters 214, 443453.CrossRefGoogle Scholar
Tajika, E (2007) Long-term stability of climate and global glaciations throughout the evolution of the Earth. Earth, Planets and Space 59, 293299.CrossRefGoogle Scholar
Tarduno, JA, Cottrell, RD, Watkeys, MK, Hofmann, A, Doubrovine, PV, Mamajek, EE, Liu, D, Sibeck, DG, Neukirch, LP and Usui, Y (2010) Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 12381240.CrossRefGoogle ScholarPubMed
Taylor, SR and McLennan, SM (1995) The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241265.CrossRefGoogle Scholar
Tikoo, SM and Elkins-Tanton, LT (2017) The fate of water within Earth and super-Earths and implications for plate tectonics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, 20150394.CrossRefGoogle ScholarPubMed
Tout, CA, Pols, OR, Eggleton, PP and Han, Z (1996) Zero-age main-sequence radii and luminosities as analytic functions of mass and metallicity. Monthly Notices of the Royal Astronomical Society 281, 257262.CrossRefGoogle Scholar
Turbet, M, Bolmont, E, Chaverot, G, Ehrenreich, D, Leconte, J and Marcq, E (2021) Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276280.CrossRefGoogle Scholar
Unterborn, CT, Johnson, JA and Panero, WR (2015) Thorium abundances in solar twins and analogs: implications for the habitability of extrasolar planetary systems. The Astrophysical Journal 806, 139.CrossRefGoogle Scholar
Valencia, D, O'connell, RJ and Sasselov, DD (2007) Inevitability of plate tectonics on super-Earths. The Astrophysical Journal Letters 670, L45.CrossRefGoogle Scholar
Van Heck, H and Tackley, P (2011) Plate tectonics on super-Earths: equally or more likely than on Earth. Earth and Planetary Science Letters 310, 252261.CrossRefGoogle Scholar
Vázquez, M, Pallé, E and Rodríguez, PM (2010) The Earth as a Distant Planet: A Rosetta Stone for the Search of Earth-like Worlds. New York: Springer Science & Business Media.10.1007/978-1-4419-1684-6CrossRefGoogle Scholar
Vervoort, P, Horner, J, Kane, SR, Turner, SK and Gilmore, JB (2022) System architecture and planetary obliquity: implications for long-term habitability. The Astronomical Journal 164, 130.CrossRefGoogle Scholar
Vinson, AM and Hansen, BM (2017) On the spin states of habitable zone exoplanets around M dwarfs: the effect of a near-resonant companion. Monthly Notices of the Royal Astronomical Society 472, 32173229.CrossRefGoogle Scholar
Vladilo, G, Murante, G, Silva, L, Provenzale, A, Ferri, G and Ragazzini, G (2013) The habitable zone of Earth-like planets with different levels of atmospheric pressure. The Astrophysical Journal 767, 65.CrossRefGoogle Scholar
Volk, T (1987) Feedbacks between weathering and atmospheric CO2 over the last 100 million years. America Journal of Science 287, 763779.CrossRefGoogle Scholar
von Paris, P, Rauer, H, Grenfell, JL, Patzer, B, Hedelt, P, Stracke, B, Trautmann, T and Schreier, F (2008) Warming the early Earth–CO2 reconsidered. Planetary and Space Science 56, 12441259.CrossRefGoogle Scholar
Walker, JC, Hays, P and Kasting, JF (1981) A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research: Oceans 86, 97769782.CrossRefGoogle Scholar
Way, MJ and Del Genio, AD (2020) Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. Journal of Geophysical Research: Planets 125, e2019JE006276.Google Scholar
Way, MJ, Del Genio, AD, Kiang, NY, Sohl, LE, Grinspoon, DH, Aleinov, I, Kelley, M and Clune, T (2016) Was Venus the first habitable world of our Solar System?. Geophysical Research Letters 43, 83768383.CrossRefGoogle ScholarPubMed
Way, M, Ernst, R and Scargle, JD (2021) Large scale volcanism and the heat-death of terrestrial worlds. Earth and Space Science Open Archive ESSOAr 3, 92.Google Scholar
Way, M, Ernst, RE and Scargle, JD (2022) Large-scale volcanism and the heat death of terrestrial worlds. The Planetary Science Journal 3, 92.CrossRefGoogle Scholar
Weiss, LM and Marcy, GW (2014) The mass–radius relation for 65 exoplanets smaller than 4 Earth radii. The Astrophysical Journal Letters 783, L6.CrossRefGoogle Scholar
Wilde, SA, Valley, JW, Peck, WH and Graham, CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175178.CrossRefGoogle ScholarPubMed
Williams, GE (1993) History of the Earth's obliquity. Earth-Science Reviews 34, 145.CrossRefGoogle Scholar
Williams, GE (2000) Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit. Reviews of Geophysics 38, 3759.CrossRefGoogle Scholar
Williams, DM and Kasting, JF (1997) Habitable planets with high obliquities. Icarus 129, 254267.CrossRefGoogle ScholarPubMed
Williams, DM and Pollard, D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. International Journal of Astrobiology 1, 6169.CrossRefGoogle Scholar
Wolf, E and Toon, O (2014) Delayed onset of runaway and moist greenhouse climates for Earth. Geophysical Research Letters 41, 167172.CrossRefGoogle Scholar
Wolf, E and Toon, O (2015) The evolution of habitable climates under the brightening Sun. Journal of Geophysical Research: Atmospheres 120, 57755794.CrossRefGoogle Scholar
Wolf, ET, Shields, AL, Kopparapu, RK, Haqq-Misra, J and Toon, OB (2017) Constraints on climate and habitability for Earth-like exoplanets determined from a general circulation model. The Astrophysical Journal 837, 107.CrossRefGoogle Scholar
Wordsworth, RD (2016) The climate of early Mars. Annual Review of Earth and Planetary Sciences 44, 381408.CrossRefGoogle Scholar
Wordsworth, R and Pierrehumbert, R (2013) Hydrogen–nitrogen greenhouse warming in Earth's early atmosphere. Science 339, 6467.CrossRefGoogle ScholarPubMed
Wordsworth, R, Forget, F, Millour, E, Head, J, Madeleine, J-B and Charnay, B (2013) Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 119.CrossRefGoogle Scholar
Wordsworth, R, Knoll, AH, Hurowitz, J, Baum, M, Ehlmann, BL, Head, JW and Steakley, K (2021) A coupled model of episodic warming, oxidation and geochemical transitions on early Mars. Nature Geoscience 14, 127132.CrossRefGoogle Scholar
Young, GM, Brunn, VV, Gold, DJ and Minter, W (1998) Earth's oldest reported glaciation: physical and chemical evidence from the Archean Mozaan group (~2.9 ga) of South Africa. The Journal of Geology 106, 523538.CrossRefGoogle Scholar
Zahnle, K, Arndt, N, Cockell, C, Halliday, A, Nisbet, E, Selsis, F and Sleep, NH (2007) Emergence of a habitable planet. Space Science Reviews 129, 3578.CrossRefGoogle Scholar
Zsom, A, Seager, S, De Wit, J and Stamenković, V (2013) Toward the minimum inner edge distance of the habitable zone. The Astrophysical Journal 778, 109.CrossRefGoogle Scholar
Zuluaga, JI and Cuartas, PA (2012) The role of rotation in the evolution of dynamo-generated magnetic fields in super Earths. Icarus 217, 88102.CrossRefGoogle Scholar
Zuluaga, JI, Bustamante, S, Cuartas, PA and Hoyos, JH (2013) The influence of thermal evolution in the magnetic protection of terrestrial planets. The Astrophysical Journal 770, 23.CrossRefGoogle Scholar