Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T20:49:40.717Z Has data issue: false hasContentIssue false

New numerical determination of habitability in the Galaxy: the SETI connection

Published online by Cambridge University Press:  27 March 2017

Rodrigo Ramirez*
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, 22800 Ensenada, BC, Mexico
Marco A. Gómez-Muñoz
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, 22800 Ensenada, BC, Mexico Instituto de Estudios Avanzados de Baja California, A.C., Blvd. Tte. Azueta 147, Edif. Matematiké Planta Baja, 22800 Ensenada, BC, Mexico
Roberto Vázquez
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, 22800 Ensenada, BC, Mexico
Patricia G. Núñez
Affiliation:
Instituto de Estudios Avanzados de Baja California, A.C., Blvd. Tte. Azueta 147, Edif. Matematiké Planta Baja, 22800 Ensenada, BC, Mexico

Abstract

In this paper, we determine the habitability of Sun-like stars in the Galaxy using Monte Carlo simulations, which are guided by the factors of the Drake Equation for the considerations on the astrophysical and biological parameters needed to generate and maintain life on a planet's surface. We used a simple star distribution, initial mass function and star formation history to reproduce the properties and distribution of stars within the Galaxy. Using updated exoplanet data from the Kepler mission, we assign planets to some of the stars, and then follow the evolution of life on the planets that met the habitability criteria using two different civilization hypotheses. We predict that around 51% of Earth-like planets in the habitable zone (HZ) are inhabited by primitive life and 4% by technological life. We apply the results to the Kepler field of view, and predicted that there should be at least six Earth-like planets in the HZ, three of them inhabited by primitive life. According to our model, non-technological life is very common if there are the right conditions, but communicative civilizations are less likely to exist and detect. Nonetheless, we predict a considerable number of detectable civilizations within our Galaxy, making it worthwhile to keep searching.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binney, J. & Tremaine, S. (2008). Galactic Dynamics. Princeton University Press, Princeton, NJ.Google Scholar
Blaha, S. (2007). The origins and sequence of civilization. Compar. Civil. Rev. 57, 7091.Google Scholar
Bogonovich, M. (2011). Intelligence's likelihood and evolutionary time frame. Int. J. Astrobiol. 10, 113122.Google Scholar
Borucki, W.J., et al. (2012). Kepler-22b: a 2.4 earth-radius planet in the habitable zone of a sun-like star. Astrophys. J. 745, 120.Google Scholar
Borucki, W.J., et al. (2013). Kepler-62: a five-planet system with planets of 1.4 and 1.6 earth radii in the habitable zone. Science 340, 587590.Google Scholar
Carigi, L. (2015). Solar neighborhood. In Encyclopedia of Astrobiology, ed. Gargaud, M., Irvine, W.M., Amils, R., Cleaves, H.J., Pinti, D., Cernicharo Quintanilla, J., Rouan, D., Spohn, T., Tirard, S. & Viso, M., pp. 22862287. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Carroll, B.W. & Ostlie, D.A. (2006). An Introduction to Modern Astrophysics and Cosmology. Addison-Wesley, Reading.Google Scholar
Carter, B. (2008). Five- or six-step scenario for evolution? Int. J. Astrobiol. 7, 177182.CrossRefGoogle Scholar
Catala, C., et al. (2010). PLATO: PLAnetary transits and oscillations of stars – the exoplanetary system explorer. ASP Conf. Ser. 430, 260265.Google Scholar
Chabrier, G. (2003). Galactic stellar and substellar initial mass function. PASP 115, 763795.Google Scholar
Clark, S. (2000). Life on Other Worlds and How to Find It. Springer, Cornwall, UK.Google Scholar
Claudi, R.U., et al. (2004). In Second Eddington Workshop: Stellar Structure and Habitable Planet Finding, ed. Favata, F., Aigrain, S. & Wilson, A., ESA SP- 538, ESA, pp. 301304.Google Scholar
Drake, F. & Sobel, D. (1994). Is Anyone Out There? Delta, New York.Google Scholar
Emery, N.J. & Clayton, N.S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306, 19031907.CrossRefGoogle ScholarPubMed
Forgan, D.H. (2009). A numerical testbed for hypotheses of extraterrestrial life and intelligence. Int. J. Astrobiol. 8, 121131.Google Scholar
Forgan, D.H. & Nichol, R.C. (2011). A failure of serendipity: the Square Kilometre Array will struggle to eavesdrop on human-like extraterrestrial intelligence. Int. J. Astrobiol. 10, 7781.Google Scholar
Forgan, D.H. & Rice, K. (2010). Numerical testing of the Rare Earth Hypothesis using Monte Carlo realization techniques. Int. J. Astrobiol. 9, 7380.Google Scholar
Hansen, C.J., Kawaler, S.D. & Trimble, V. (2004). Stellar Interiors, pp. 2330. Springer, New York.Google Scholar
Haqq-Misra, J.D. & Baum, S.D. (2009). The sustainability solution of the Fermi Paradox. J. Br. Interplanet. Soc. 62, 4751.Google Scholar
Jenkins, J.M. et al. (2015). Discovery and validation of Keple-452b: a $1.6 R_ \oplus $ super Earth exoplanet in the habitable zone of a G2 star. Astron. J. 150, 56.Google Scholar
Kapitza, S.P. (2010). On the theory of global population growth. Phys. — Usp. 53, 12871296.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Habitable zones around main sequence stars. Icarus 101, 108128.Google Scholar
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013). Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131.Google Scholar
Kroupa, P. (2001). On the variation of the initial mass function. MNRAS 322, 231246.Google Scholar
Loeb, A. & Zaldarriaga, M. (2007). Eavesdropping on Radio Broadcasts from galactic civilizations with upcoming observatories for redshifted 21 cm radiation. Journal of Cosmology and Astroparticle Physics 2007 (1), 20.Google Scholar
Mackwell, S.J., Simon-Miller, A.A., Harder, J.W. & Bullock, M.A. (2013). Comparative Climatology of Terrestrial Planets. The Univ. of Arizona Press, Tucson, AZ.Google Scholar
McInnes, C.R. (2002). The light cage limit of interstellar expansion. Journal of the British Interplanetary Society 55, 279284.Google Scholar
Miller, G.E. & Scalo, J.M. (1979). The initial mass function and stellar birthrate in the solar neighborhood. Astrophys. J. Supp. Ser. 41, 513547.Google Scholar
Mojzsis, S.J., Arrhenius, G., Mckeegan, K.D., Harrison, T.M., Nutman, A.P. & Friend, C.R.L. (1996). Evidence for life on Earth before 3,800 million years ago. Nature 384, 5559.Google Scholar
Monet, D.G. (1996). The General Release of USNO-A1.0. BAAS 28, 905 (abstract).Google Scholar
Patel, B.H., Percivalle, C., Ritson, D.J., Duffy, C.D. & Sutherland, J.D. (2015). Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nature Chemistry 7, 301307.Google Scholar
Petigura, E.A., Howard, A.W. & Marcy, G.W. (2013). Prevalence of Earth-size planets orbiting Sun-like stars. PNAS 110, 1927319278.Google Scholar
Pizzarello, S. (2007). Question 2: why astrobiology? Orig. Life Evol. Biosph. 37, 341344.Google Scholar
Planetary Habitability Laboratory. University of Puerto Rico at Arecibo. http://phl.upr.edu.Google Scholar
Quintana, E.V. et al. (2014). An earth-sized planet in the habitable zone of a cool star. Science 344, 277280.Google Scholar
Raup, D.M. & Sepkoski, J.J. (1982). Mass extinctions in the marine fossil record. Science 215, 15011503.Google Scholar
Reece, J.B., Urry, L.A., Cain, M.C., Wasserman, S.A., Minorsky, P.V. & Jackson, R.B. (2011). Campbell Biology. Pearson, San Francisco, CA.Google Scholar
Rocha-Pinto, H.J., Scalo, J.M., Maciel, W.J. & Flynn, C. (2000). Chemical enrichment and star formation in the Milky Way disk. II. Star formation history. Astron. Astrophys. 358, 869885.Google Scholar
Rogers, L.A. (2015). Most 1.6 Earth-radius planets are not rocky. Astrophys. J. 801, 43.Google Scholar
Rospar, J. (2013). Trends in the evolution of life, brains and intelligence. Int. J. Astrobiol. 12, 186207.Google Scholar
Sagan, C. & Shklovskii, I.S. (1966). Intelligent Life in the Universe. Holden-Day, San Francisco, CA.Google Scholar
The Extrasolar Planets Encyclopaedia. http://exoplanets.eu. (accessed December 2015).Google Scholar
Tomasello, M. & Call, J. (1997). Primate Cognition. Oxford Univ. Press, Oxford, UK.Google Scholar
Torres, G., et al. (2015). Validation of 12 small Kepler transiting planets in the habitable zone. Astrophys. J. 800, 99123.Google Scholar
Zaleski, D.P., Seifert, N.A., Steber, A.L., Muckle, M.T., Lommis, R.A., Corby, J.F., Martinez, O., Crabtree, K.N., Jewell, P.R. & Hollis, J.M. (2013). Detection of E-cyanomethanimine toward Saggitarius B2(N) in the Green Bank Telescope PRIMOS Survey. Astrophys. J. Lett. 765, 10.CrossRefGoogle Scholar