Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T02:41:49.919Z Has data issue: false hasContentIssue false

Morphometry of volcanic cones on Mars in perspective of Astrobiological Research

Published online by Cambridge University Press:  29 May 2015

Michael Gilichinsky
Affiliation:
Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden. Affiliation at the time of manuscript preparation
Nikita Demidov
Affiliation:
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
Elizaveta Rivkina*
Affiliation:
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia

Abstract

The permanently frozen volcanic sediment is one of the most promising geological objects for searching life on Mars. On Earth, volcanic intrusions into permafrost result in formation of the unique microbial communities. We propose several terrestrial analogues of Martian polar volcanoes, such as the permanently frozen volcanic sediments on the Kamchatka peninsula and in Antarctica. The present study shows applicability of the morphometric analysis for demonstration of the morphological similarity between the terrestrial and Martian cinder cones. In the present work, the morphometric analysis of young Martian landforms is based on the assumption that the conical structures identified on digital terrain model (DTM) are volcanic cinder cones. Morphometric analysis of the studied cones showed a range of degradation. The extent of degradation may be an indicator of age based on comparison with volcanic cinder cones on Earth. A morphometric analysis of potentially young volcanic cones in the North Polar Region of Mars was performed to estimate their relative age. The 14 potential cinder cones were identified using the DTM provided by Mars Express High Resolution Stereo Camera (HRSC), allowing for the basic morphometric calculations. The majority of the cinder cones are localized in the Chasma Boreale region within the area 79°–81°N and 261°–295°E. The calculated morphometric parameters showed that the cone average steepness varied from 3.4° to 11.8°, cone height-to-width ratio varied from 0.025 to 0.12, and the ratio between surface and basal area of the cone varied from 1.005 to 1.131. The studied cinder cones were classified with respect to the morphometric ratios assuming that larger values correspond to the younger structures. Employing the terrestrial analogy of morphometric ratios as a proxy for relative geological age, we suggest that existing microorganisms may be found in permafrost of young Martian cinder cones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, A., Gruber, S. & Gilichinsky, D.A. (2008). Mountain permafrost on active volcanoes: field data and statistical mapping, Klyuchevskaya volcano group, Kamchatka, Russia. Permafrost Periglacial Process. 19, 261277.CrossRefGoogle Scholar
Berman, D.C. & Hartmann, W.K. (2002). Recent fluvial, volcanic, and tectonic activity on the Cerberus plains of Mars. Icarus 159, 117.Google Scholar
Bloomfield, K. (1975). A late-quaternary monogenetic volcanic field in central Mexico. Geologischen Rundschau 64, 476497.CrossRefGoogle Scholar
Broz, P. & Hauber, E. (2012). A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus 218, 8899.Google Scholar
Broz, P., Cadek, O., Hauber, E. & Rossi, A.P. (2014). Shape of scoria cones on Mars: insights from numerical modeling of ballistic pathways. Earth Planet. Sci. Lett. 406, 1423.Google Scholar
Carr, M.H. (2006). The Surface of Mars. pp. 4376. United States of America, Cambridge University Press, New York.Google Scholar
Cousins, C.R. & Crawford, I.A. (2011). Volcano-ice interaction as a microbial habitat on earth and Mars. Astrobiology 11, 695710.Google Scholar
Dohrenwend, J.C., Wells, S.G. & Turrin, B.D. (1986). Degradation of quaternary cinder cones in the Cima volcanic field, Mojave Desert, California. Geol. Soc. Am. Bull. 97, 421427.Google Scholar
Dóniz, J., Romero, C., Coello, E., Guillén, C., Sánchez, N., García-Cacho, L. & García, A. (2008). Morphological and statistical characterization of recent mafic volcanism on Tenerife (Canary Islands, Spain). J. Volcanol. Geotherm. Res. 173, 185195.Google Scholar
Fagents, S.A. & Wilson, L. (1996). Numerical modelling of ejecta dispersal from transient volcanic explosions on Mars. Icarus 123, 284295.Google Scholar
Fishbaugh, K.E. & Head, J.W. (2002). Chasma Boreale, Mars: topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation. J. Geophys. Res. 107, 126.Google Scholar
Flores, P.A., Amenábar, M.J. & Blamey, J.M. (2013). Hot environments from Antarctica: source of Thermophiles and Hyperthermophiles, with potential biotechnological applications. In Thermophilic Microbes in Environmental and Industrial Biotechnology, ed. Satyanarayana, T., Littlechild, J., Kawarabayasi, Yu., pp. 99118. Springer, Netherlands.CrossRefGoogle Scholar
Garvin, J.B., Sakimoto, S.E.H., Frawley, J.J., Schnetzler, C.C. & Wright, H.M. (2000). Topographic evidence for geologically recent near-polar volcanism on Mars. Icarus 145, 648652.Google Scholar
Gilichinsky, D.A. & Rivkina, E.M. (2011). Permafrost microbiology. In Encyclopedia of Geobiology, ed. Reitner, J., Thiel, V., pp. 726732. Springer, Verlag.Google Scholar
Gilichinsky, D. et al. (2007). Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7, 275311.CrossRefGoogle ScholarPubMed
Gilichinsky, M., Melnikov, D., Melekestsev, I., Zaretskaya, N. & Inbar, M. (2010). Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field in Central Kamchatka. Can. J. Remote Sens. 36, 287300.Google Scholar
Gilichinsky, D., Rivkina, E., Vishnivetskaya, T., Gomez, F., Mironov, V., Lamey, J., Ramos, M., de Pablo, A., Castro, M. & Boehmwald, F. (2010). Habitability of Mars: Hyperthermophiles in Permafrost. In 38th COSPAR Scientific Assembly, p. 11.Google Scholar
Hasenaka, T. & Carmichael, I.S.E. (1985). A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacan–Guanajuato volcanic field, central Mexico. Geofis. Int. 24, 577607.Google Scholar
Herbold, C.W., Lee, C.K., McDonald, I.R. & Cary, S.C. (2014). Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nat. Commun. 5, 3875.CrossRefGoogle ScholarPubMed
Herkenhoff, K. & Plaut, J. (2000). Surface ages and resurfacing rates of the polar layered deposits on Mars. Icarus 144, 243255.Google Scholar
Hodges, C.A. & Moore, H.J. (1994). Atlas of volcanic landforms on Mars. U.S. Geological Survey Professional Report, pp. 183184.CrossRefGoogle Scholar
Hooper, D.M. (1995). Computer-simulation models of scoria cone degradation in the Colima and Michoacan–Guanajuato volcanic fields, Mexico. Geofis. Int. 34, 321340.Google Scholar
Inbar, M. & Risso, C. (2001). A morphological and morphometric analysis of ahigh density cinder cone volcanic field – Payun Matru, south-central Andes, Argentina. Z. Geomorphol. 45, 321343.Google Scholar
Inbar, M., Gilichinsky, M., Melekestsev, I. & Melnikov, D. (2008). A Morphological and Morphometric Study of Cinder Cones in Kamchatka and Golan Heights. Proceedings of the Israel Geological Society Annual Meeting, Nazareth, Israel, p. 44.Google Scholar
Inbar, M., Gilichinsky, M., Melekestsev, I., Melnikov, D. & Zaretskaya, N. (2011). Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field, Kamchatka. J. Volcanol. Geotherm. Res. 201, 301311.Google Scholar
Inbar, M., Lugo Hubp, J. & Villers Ruiz, L. (1994). The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943–1990. Geomorphology. 9, 57–76.Google Scholar
Lanz, J.K., Wagner, R., Wolf, U., Kröchert, J. & Neukum, G. (2010). Rift zone volcanism and associated cinder cone field in Utopia Planitia, Mars. J. Geophys. Res. 115, 121.Google Scholar
Martin del Pozzo, A.L. (1982). Monogenetic vulcanism in Sierra Chichinautzin, Mexico. Bull. Volcanol. 45, 924.CrossRefGoogle Scholar
Mironov, V., Shcherbakova, V., Rivkina, E. & Gilichinsky, D. (2013). Thermophilic bacteria Geobacillus genus from volcanic permafrost sediments. Microbiology 82(3), 389392.CrossRefGoogle Scholar
Mouginis-Mark, P.J., Wilson, L. & Zuber, M.T. (1992). The physical volcanology of Mars in Mars, ed. Kieffer, H.H., Jakosky, B.M., Snyder, C.W. & Matthews, M.S., pp. 424452. University of Arizona Press, Tucson, AZ.Google Scholar
Nemeth, K. (2011). From maars to scoria cones: the enigma of monogenetic volcanic fields, Journal of Volcanology and Geothermal Research. 201, 14.Google Scholar
Neukum, G. & van Gasselt, S. (2006). Recent volcanism at the Martian north pole. Geophys. Res. Abstr. 8, 11103.Google Scholar
Neukum, G., Jaumann, R., Hoffmann, H., Hauber, E., Head, J.W., Basilevsky, A.T., Ivanov, B.A., Werner, S.C., Van Gasselt, S. & Murray, J.B. (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. Nature 432, 971979.CrossRefGoogle ScholarPubMed
de Pablo, M.A. & Komatsu, G. (2009) Possible pingo fields in the Utopia basin, Mars: Geological and climatical implications, Icarus, 199, 4974.CrossRefGoogle Scholar
Parfitt, E.A. & Wilson, L. (2008). Fundamentals of Physical Volcanology. Blackwell, Oxford, UK.Google Scholar
Parrot, J.F. (2007). Three-dimensional parameterization: an automated treatment to study the evolution of volcanic cones. Geomorphologie 3, 247258.CrossRefGoogle Scholar
Pondrelli, M., Rossi, A.P., Ori, G.G., van Gasselt, S., Praeg, D. & Ceramicola, S. (2011). Mud volcanoes in Mars Geologic Record: the case of Firsoff Crater, Earth and Planetary Science Letters, 304, 511519.Google Scholar
Porter, S.C. (1972). Distribution, morphology and size frequency of cinder cones on Mauna Kea volcano, Hawaii. Geol. Soc. Am. Bull. 83, 36073612.CrossRefGoogle Scholar
Scott, D.H. & Trask, N.J. (1971). Geology of the Luna Crater volcanic field, Nye County, Nevada. USGS Professional Paper, 599-I. p. 22.Google Scholar
Segerstrom, K. (1950). Erosion studies at Parícutin, State of Michoacán. Mexico, U.S. Geological Survey Bulletin. 965-A, 1164.Google Scholar
Settle, M. (1979). The structure and emplacement of cinder cone fields. Am. J. Sci. 279, 10891107.Google Scholar
Warner, N.H. & Farmer, J.D. (2008). The origin of conical mounds at the mouth of Chasma Boreale. J. Geophys. Res. 113, 128.Google Scholar
Wilson, L. & Head, J.W. (1994). Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32, 221264.Google Scholar
Wolfe, E.W., Ulrich, G.E. & Newhall, C.G. (1987). Geologic Map of the Northwest Part of the San Francisco Volcanic Field, North-central Arizona. USGS Misc. Field Stud. Map, MF1957.Google Scholar
Wood, C.A. (1979). Monogenetic volcanoes of the terrestrial planets. In 10th, Lunar and Planetary Science Conf., Proc., Houston, Texas, 19–23 March, 1979 pp. 2815–2840. Pergamon Press, New York.Google Scholar
Wood, C.A. (1980). Morphometric analysis of cinder cone degradation. J. Volcanol. Geotherm. Res. 8, 137160.Google Scholar