Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T23:05:26.129Z Has data issue: false hasContentIssue false

The maximum growth rate of life on Earth

Published online by Cambridge University Press:  06 February 2017

Ross Corkrey*
Affiliation:
Tasmanian Institute of Agriculture/School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
Tom A. McMeekin
Affiliation:
Tasmanian Institute of Agriculture/School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
John P. Bowman
Affiliation:
Tasmanian Institute of Agriculture/School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
June Olley
Affiliation:
Tasmanian Institute of Agriculture/School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
David Ratkowsky
Affiliation:
Tasmanian Institute of Agriculture/School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
Tom Ross
Affiliation:
Tasmanian Institute of Agriculture/School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia

Abstract

Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahern, T.J. & Klibanov, A.M. (1985). The mechanisms of irreversible enzyme inactivation at 100°C. Science 228(4705), 12801284.CrossRefGoogle ScholarPubMed
Atkinson, D., Ciotti, B.J. & Montagnes, D.J. (2003). Protists decrease in size linearly with temperature: ca. 2.5% °C−1 . Proc. R. Soc. B 270(1533), 26052611.Google ScholarPubMed
Bains, W. (2004). Many chemistries could be used to build living systems. Astrobiology 4(2), 137167.CrossRefGoogle ScholarPubMed
Bains, W., Xiao, Y. & Yu, C. (2015). Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water. Life 5(2), 10541100.CrossRefGoogle ScholarPubMed
Bakermans, C. (2012). Psychrophiles: life in the cold. In Extremophiles: Microbiology and Biotechnology, ed. Anitoris, R., pp. 5376. Horizon Scientific Press, Hethersett, UK.Google Scholar
Bakermans, C., Tsapin, A.I., Souza-Egipsy, V., Gilichinsky, D.A. & Nealson, K.H. (2003). Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ. Microbiol. 5(4), 321326.CrossRefGoogle Scholar
Baldwin, R.L. (1986). Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. USA 83(21), 80698072.CrossRefGoogle ScholarPubMed
Baross, J.A. & Deming, J.W. (1983). Growth of ‘black smoker’ bacteria at temperatures of at least 250°C. Nature 303(5916), 423426.CrossRefGoogle Scholar
Becerra, A., Delaye, L., Islas, S. & Lazcano, A. (2007). The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu. Rev. Ecol. Evol. Syst. 38, 361379.CrossRefGoogle Scholar
Bednarska, N.G., Schymkowitz, J., Rousseau, F. & Van Eldere, J. (2013). Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159(9), 17951806.CrossRefGoogle ScholarPubMed
Bernhardt, G., Lüdemann, H.D., Jaenicke, R., König, H. & Stetter, K.O. (1984). Biomolecules are unstable under “black smoker” conditions. Naturwissenschaften 71(11), 583586.CrossRefGoogle Scholar
Birch, L.C. (1948). The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17(1), 1526.CrossRefGoogle Scholar
Blain, J.C. & Szostak, J.W. (2014). Progress toward synthetic cells. Annu. Rev. Biochem. 83, 615640.CrossRefGoogle ScholarPubMed
Bloom, J.D., Labthavikul, S.T., Otey, C.R. & Arnold, F.H. (2006). Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103(15), 58695874.CrossRefGoogle ScholarPubMed
Boussau, B., Blanquart, S., Necsulea, A., Lartillot, N. & Gouy, M. (2008). Parallel adaptations to high temperatures in the Archaean eon. Nature 456(7224), 942945.CrossRefGoogle ScholarPubMed
Bowers, K.J., Mesbah, N.M. & Wiegel, J. (2009). Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst. 5(9). DOI:10.1186/1746-1448-5-9.CrossRefGoogle ScholarPubMed
Bragger, J., Dunn, R. & Daniel, R.M. (2000). Enzyme activity down to −100°C. Biochim. Biophys. Acta – Protein Struct. Mol. Enzymol. 1480(1), 278282.CrossRefGoogle Scholar
Breezee, J., Cady, N. & Staley, J. (2004). Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii. Microb. Ecol. 47(3), 300304.CrossRefGoogle ScholarPubMed
Brooks, S.P. (1998). Markov chain Monte Carlo method and its application. J. R. Stat. Soc. D – Stat. 47, 69100.Google Scholar
Carpenter, E.J., Lin, S. & Capone, D.G. (2000). Bacterial activity in south pole snow. Appl. Environ. Microbiol. 66(10), 45144517.CrossRefGoogle ScholarPubMed
Cherry, J.L. (2010). Highly expressed and slowly evolving proteins share compositional properties with thermophilic proteins. Mol. Biol. Evol. 27(3), 735741.CrossRefGoogle ScholarPubMed
Chirife, J. & Resnik, S.L. (1984). Unsaturated solutions of sodium chloride as reference sources of water activity at various temperatures. J. Food Sci. 49(6), 14861488.CrossRefGoogle Scholar
Chopra, A. & Lineweaver, C.H. (2016). The case for a Gaian bottleneck: the biology of habitability. Astrobiology 16(1), 722.CrossRefGoogle ScholarPubMed
Chrzanowski, T.H., Crotty, R.D. & Hubbard, G. (1988). Seasonal variation in cell volume of epilimnetic bacteria. Microb. Ecol. 16(2), 155163.CrossRefGoogle ScholarPubMed
Clarke, A. (2014). The thermal limits to life on Earth. Int. J. Astrobiol. 13(02), 141154.CrossRefGoogle Scholar
Clarke, A., Morris, G.J., Fonseca, F., Murray, B.J., Acton, E. & Price, H.C. (2013). A low temperature limit for life on Earth. PLoS ONE 8(6), e66207.CrossRefGoogle ScholarPubMed
Cleland, C.E. & Chyba, C.F. (2002). Defining ‘life’. Orig. Life Evol. Biosph. 32(4), 387393.CrossRefGoogle ScholarPubMed
Cleland, C.E. & Copley, S.D. (2005). The possibility of alternative microbial life on Earth. Int. J. Astrobiol. 4(3–4), 165173.CrossRefGoogle Scholar
Cockell, C. et al. (2016). Habitability: a review. Astrobiology 16(1), 129.CrossRefGoogle ScholarPubMed
Collins, M. & Buick, R. (1989). Effect of temperature on the spoilage of stored peas by Rhodotorula glutinis . Food Microbiol. 6(3), 135141.CrossRefGoogle Scholar
Corkrey, R., Olley, J., Ratkowsky, D., McMeekin, T. & Ross, T. (2012). Universality of thermodynamic constants governing biological growth rates. PLoS ONE 7(2), e32003.CrossRefGoogle ScholarPubMed
Corkrey, R., McMeekin, T.A., Bowman, J.P., Ratkowsky, D.A., Olley, J. & Ross, T. (2014). Protein thermodynamics can be predicted directly from biological growth rates. PLoS ONE 9(5), e96100.CrossRefGoogle ScholarPubMed
Corkrey, R., McMeekin, T.A., Bowman, J.P., Ratkowsky, D.A., Olley, J. & Ross, T. (2016). The Biokinetic Spectrum for Temperature. PLoS ONE 11(4), e0153343.CrossRefGoogle ScholarPubMed
Daniel, R.M. (1996). The upper limits of enzyme thermal stability. Enzyme Microb. Technol. 19(1), 7479.CrossRefGoogle Scholar
Daniel, R. (2003). Astroenzymology – the environmental limits of enzyme activity. Proc. SPIE 4859, 121129.Google Scholar
Daniel, R.M. & Cowan, D.A. (2000). Biomolecular stability and life at high temperatures. CMLS – Cell. Mol. Life S. 57(2), 250264.CrossRefGoogle ScholarPubMed
Daniel, R., Dines, M. & Petach, H. (1996). The denaturation and degradation of stable enzymes at high temperatures. Biochem. J 317, 111.CrossRefGoogle ScholarPubMed
Daniel, R.M., van Eckert, R., Holden, J.F., Truter, J. & Crowan, D.A. (2004). The stability of biomolecules and the implications for life at high temperatures. In The Subseafloor Biosphere at Mid-Ocean Ridges, Geophysical Monograph 144, ed. Wilcock, W.S.D., Delong, E.F., Kelley, D.S., Baross, J.A. & Cary, S.C., pp. 2539. Wiley Online Library, Washington, DC, USA.CrossRefGoogle Scholar
Dartnell, L. (2011). Biological constraints on habitability. Astron. Geophys. 52(1), 125.CrossRefGoogle Scholar
Davies, P.C. (2012). Footprints of alien technology. Acta Astronaut. 73, 250257.CrossRefGoogle Scholar
Davies, P.C.W. & Lineweaver, C.H. (2005). Finding a second sample of life on Earth. Astrobiology 5(2), 154163.CrossRefGoogle ScholarPubMed
Davies, P.C., Benner, S.A., Cleland, C.E., Lineweaver, C.H., McKay, C.P. & Wolfe-Simon, F. (2009). Signatures of a shadow biosphere. Astrobiology 9(2), 241249.Google ScholarPubMed
Des Marais, D. & Walter, M. (1999). Astrobiology: exploring the origins, evolution, and distribution of life in the universe. Annu. Rev. Ecol. Syst. 30, 397420.CrossRefGoogle ScholarPubMed
Des Marais, D.J., Harwit, M.O., Jucks, K.W., Kasting, J.F., Lin, D.N., Lunine, J.I., Schneider, J., Seager, S., Traub, W.A. & Woolf, N.J. (2002). Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2(2), 153181.CrossRefGoogle ScholarPubMed
Dick, M., Weiergräber, O.H., Classen, T., Bisterfeld, C., Bramski, J., Gohlke, H. & Pietruszka, J. (2016). Trading off stability against activity in extremophilic aldolases. Sci. Rep. 6(17908), 112. DOI:10.1038/srep17908.Google ScholarPubMed
Eppley, R.W. (1972). Temperature and phytoplankton growth in the sea. Fish. Bull. 70(4), 10631085.Google Scholar
Fields, P.A. (2001). Review: protein function at thermal extremes: balancing stability and flexibility. Comp. Biochem. Phys. A 129(2), 417431.CrossRefGoogle ScholarPubMed
Fox-Powell, M.G., Hallsworth, J.E., Cousins, C.R. & Cockell, C.S. (2016). Ionic strength is a barrier to the habitability of Mars. Astrobiology 16(6), 427442.CrossRefGoogle Scholar
Galtier, N. & Lobry, J. (1997). Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J. Mol. Evol. 44(6), 632636.CrossRefGoogle ScholarPubMed
Goordial, J., Davila, A., Lacelle, D., Pollard, W., Marinova, M.M., Greer, C.W., DiRuggiero, J., McKay, C.P. & Whyte, L.G. (2016). Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. 10(7), 16131624. DOI:10.1038/ismej.2015.239.CrossRefGoogle ScholarPubMed
Groeneveld, P., Stouthamer, A.H. & Westerhoff, H.V. (2009). Super life–how and why ‘cell selection’ leads to the fastest-growing eukaryote. FEBS J. 276(1), 254270.CrossRefGoogle Scholar
Grogan, D.W. (1998). Hyperthermophiles and the problem of DNA instability. Mol. Microbiol. 28(6), 10431049.CrossRefGoogle ScholarPubMed
Hansen, L.D., Criddle, R.S. & Battley, E.H. (2009). Biological calorimetry and the thermodynamics of the origination and evolution of life. Pure Appl. Chem. 81(10), 18431855.CrossRefGoogle Scholar
Hanski, I. & Gilpin, M. (1991). Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linnean Soc. 42(1–2), 316.CrossRefGoogle Scholar
Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D. & Cockell, C.S. (2013). The limits for life under multiple extremes. Trends Microbiol. 21(4), 204212.CrossRefGoogle ScholarPubMed
Harrison, J.P., Dobinson, L., Freeman, K., McKenzie, R., Wyllie, D., Nixon, S.L. & Cockell, C.S. (2015). Aerobically respiring prokaryotic strains exhibit a broader temperature – pH – salinity space for cell division than anaerobically respiring and fermentative strains. J. R. Soc. Interface 12, 20150658.CrossRefGoogle ScholarPubMed
Hoehler, T. (2004). Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2(4), 205215.CrossRefGoogle Scholar
Holden, J.F. & Daniel, R.M. (2004). The upper temperature limit for life based on hyperthermophile culture experiments and field observations. In The Subseafloor Biosphere at Mid-Ocean Ridges, Geophysical Monograph 144, ed. Wilcock, W.S.D., Delong, E.F., Kelley, D.S., Baross, J.A. & Cary, S.C., pp. 1324. Wiley Online Library, Washington, DC, USA.CrossRefGoogle Scholar
Iyer-Biswas, S., Wright, C.S., Henry, J.T., Lo, K., Burov, S., Lin, Y., Crooks, G.E., Crosson, S., Dinner, A.R. & Scherer, N.F. (2014). Scaling laws governing stochastic growth and division of single bacterial cells. Proc. Natl. Acad. Sci. USA 111(45), 1591215917.CrossRefGoogle ScholarPubMed
Jaenicke, R. & Sterner, R. (2006). Life at high temperatures. In The Prokaryotes, ed. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E., volume 2, chapter 1.7, pp. 167209. Springer, New York, USA.CrossRefGoogle Scholar
James, T. & Read, C. (1957). The effect of incubation temperature on the cell size of Tetrahymena pyriformis . Exp. Cell Res. 13(3), 510516.CrossRefGoogle ScholarPubMed
Jones, E. & Lineweaver, C. (2012). Using the phase diagram of liquid water to search for life. Aust. J. Earth Sci. 59(2), 253262.CrossRefGoogle Scholar
Karel, M., Anglea, S., Buera, P., Karmas, R., Levi, G. & Roos, Y. (1994). Stability-related transitions of amorphous foods. Thermochim. Acta 246(2), 249269.CrossRefGoogle Scholar
Karlin, S., Mrázek, J., Campbell, A. & Kaiser, D. (2001). Characterizations of highly expressed genes of four fast-growing bacteria. J. Bacteriol. 183(17), 50255040.CrossRefGoogle ScholarPubMed
Kim, Y.E., Hipp, M., Bracher, A., Hayer-Hartl, M. & Hartl, F.U. (2013). Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82(1), 323355.CrossRefGoogle ScholarPubMed
Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. (2013). Molecular crowding limits translation and cell growth. Proc. Natl. Acad. Sci. USA 110(42), 1675416759.CrossRefGoogle ScholarPubMed
Koga, Y. (2012). Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012(Article ID 789652), 16. DOI:10.1155/2012/789652.CrossRefGoogle ScholarPubMed
Koop, T., Luo, B., Tsias, A. & Peter, T. (2000). Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406(6796), 611614.CrossRefGoogle ScholarPubMed
Kumar, S. & Nussinov, R. (2001). How do thermophilic proteins deal with heat? Cell. Mol. Life Sci. 58(9), 12161233.CrossRefGoogle ScholarPubMed
Larkin, J. & Stokes, J. (1968). Growth of psychrophilic microorganisms at subzero temperatures. Can. J. Microbiol. 14(2), 97101.CrossRefGoogle ScholarPubMed
Larralde, R., Robertson, M.P. & Miller, S.L. (1995). Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc. Natl. Acad. Sci. USA 92(18), 81588160.CrossRefGoogle ScholarPubMed
Leibrock, E., Bayer, P. & Lüdemann, H.D. (1995). Nonenzymatic hydrolysis of adenosinetriphosphate (ATP) at high temperatures and high pressures. Biophys. Chem. 54(2), 175180.CrossRefGoogle ScholarPubMed
Lewis, N.E. et al. (2010). Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6(1), 390.CrossRefGoogle ScholarPubMed
Luke, K.A., Higgins, C.L. & Wittung-Stafshede, P. (2007). Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J. 274(16), 40234033.CrossRefGoogle ScholarPubMed
Maida, I., Bosi, E., Perrin, E., Papaleo, M.C., Orlandini, V., Fondi, M., Fani, R., Wiegel, J., Bianconi, G. & Canganella, F. (2013). Draft genome sequence of the fast-growing bacterium Vibrio natriegens strain DSMZ 759. Genome Announcements 1(4), e0064813.CrossRefGoogle ScholarPubMed
Maitra, A. & Dill, K.A. (2015). Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc. Natl. Acad. Sci. USA 112(2), 406411.CrossRefGoogle ScholarPubMed
Makhatadze, G.I. & Privalov, P.L. (1993). Contribution of hydration to protein-folding thermodynamics. I. The enthalpy of hydration. J. Mol. Biol. 232(2), 639659.CrossRefGoogle ScholarPubMed
McMeekin, T.A., Chandler, R.E., Doe, P.E., Garland, C.D., Olley, J., Putro, S. & Ratkowsky, D.A. (1987). Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus . J. Appl. Bacteriol. 62(6), 543550.CrossRefGoogle ScholarPubMed
McMeekin, T.A., Olley, J.N., Ross, T. & Ratkowsky, D.A. (1993). Predictive Microbiology: Theory and Application. Research Studies Press Ltd., Taunton, Somerset, England.Google Scholar
McMeekin, T., Olley, J., Ratkowsky, D., Corkrey, R. & Ross, T. (2013). Predictive microbiology theory and application: is it all about rates? Food Control 29(2), 290299.CrossRefGoogle Scholar
Mira, A., Ochman, H. & Moran, N.A. (2001). Deletional bias and the evolution of bacterial genomes. Trends Genet. 17(10), 589596.CrossRefGoogle ScholarPubMed
Montagnes, D.J.S. & Franklin, D.J. (2001). Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol. Oceanogr. 46(8), 20082018.CrossRefGoogle Scholar
More, N., Daniel, R.M. & Petach, H.H. (1995). The effect of low temperatures on enzyme activity. Biochem. J. 305(1), 1720.CrossRefGoogle ScholarPubMed
Mukaiyama, A. & Takano, K. (2009). Slow unfolding of monomeric proteins from hyperthermophiles with reversible unfolding. Int. J. Mol. Sci. 10(3), 13691385.CrossRefGoogle ScholarPubMed
Murphy, K.P., Privalov, P.L. & Gill, S.J. (1990). Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247(4942), 559561.CrossRefGoogle ScholarPubMed
Mykytczuk, N.C.S., Foote, S.J., Omelon, C.R., Southam, G., Greer, C.W. & Whyte, L.G. (2013). Bacterial growth at −15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7(6), 12111226.CrossRefGoogle Scholar
Pace, N.R. (2001). The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 98(3), 805808.CrossRefGoogle ScholarPubMed
Panikov, N., Flanagan, P., Oechel, W., Mastepanov, M. & Christensen, T. (2006). Microbial activity in soils frozen to below −39°C. Soil Biol. Biochem. 38(4), 785794.CrossRefGoogle Scholar
Pitt, J. & Christian, J. (1968). Water relations of xerophilic fungi isolated from prunes. Appl. Microbiol. 16(12), 18531858.CrossRefGoogle ScholarPubMed
Ponder, M.A., Gilmour, S.J., Bergholz, P.W., Mindock, C.A., Hollingsworth, R., Thomashow, M.F. & Tiedje, J.M. (2005). Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol. Ecol. 53(1), 103115.CrossRefGoogle ScholarPubMed
Privalov, P.L. & Gill, S.J. (1988). Stability of protein structure and hydrophobic interaction. Adv. Protein Chem. 39, 191234.CrossRefGoogle ScholarPubMed
Privalov, P.L. & Makhatadze, G.I. (1993). Contribution of hydration to protein-folding thermodynamics. II. The entropy and Gibbs energy of hydration. J. Mol. Biol. 232(2), 660679.CrossRefGoogle ScholarPubMed
Ratkowsky, D.A., Olley, J. & Ross, T. (2005). Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J. Theor. Biol. 233(3), 351362.CrossRefGoogle ScholarPubMed
Reid, D.S. & Fennema, O.R. (2007). Water and ice. In Fennema's Food Chemistry, ed. Damodaran, S., Parkin, K.L. & Fennema, O.R., chapter 2, pp. 1777. CRC Press, Boca Raton.Google Scholar
Resnik, S.L. & Chirife, J. (1988). Proposed theoretical water activity values at various temperatures for selected solutions to be used as reference sources in the range of microbial growth. J. Food Prot. 51(5), 419423.CrossRefGoogle ScholarPubMed
Rivkina, E.M., Friedmann, E.I., McKay, C.P. & Gilichinsky, D.A. (2000). Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66(8), 32303233.CrossRefGoogle ScholarPubMed
Roos, Y.H. (2010). Glass transition temperature and its relevance in food processing. Annu. Rev. Food Sci. Technol. 1, 469496.CrossRefGoogle ScholarPubMed
Ross, T. (1993). A philosophy for the development of kinetic models in predictive microbiology. PhD Thesis, University of Tasmania, Hobart.Google Scholar
Ross, T. (1997). Assessment of a theoretical model for the effects of temperature on bacterial growth rate. In Int. Inst. Refrig., ed. Dodd, J.C. & Gianinazzi-Pearson, V., pp. 6471, International Institute of Refrigeration, Paris, Quimper, France.Google Scholar
Sabath, N., Ferrada, E., Barve, A. & Wagner, A. (2013). Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol. Evol. 5(5), 966977.CrossRefGoogle ScholarPubMed
Schulze-Makuch, D. & Irwin, L.N. (2008). Life in the Universe: Expectations and Constraints. Springer Science & Business Media, Berlin Heidelberg.CrossRefGoogle Scholar
Sjöstedt, J., Hagström, Å. & Zweifel, U.L. (2012). Variation in cell volume and community composition of bacteria in response to temperature. Aquat. Microb. Ecol. 66(3), 237246.CrossRefGoogle Scholar
Space Studies Board. (2007). The Limits of Organic Life in Planetary Systems. National Academies Press, Washington, DC, USA.Google Scholar
Stepanov, V.G. & Nyborg, J. (2002). Thermal stability of aminoacyl-trnas in aqueous solutions. Extremophiles 6(6), 485490.CrossRefGoogle ScholarPubMed
Sterner, R.h. & Liebl, W. (2001). Thermophilic adaptation of proteins. Crit. Rev. Biochem. Mol. Biol. 36(1), 39106.CrossRefGoogle ScholarPubMed
Stetter, K.O. (2006). Hyperthermophiles in the history of life. Philos. Trans. R. Soc. B 361(1474), 18371843.CrossRefGoogle ScholarPubMed
Stevenson, A. et al. (2015). Is there a common water-activity limit for the three domains of life? ISME J. 9(6), 13331351.CrossRefGoogle Scholar
Stockbridge, R.B., Lewis, C.A., Yuan, Y. & Wolfenden, R. (2010). Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proc. Natl. Acad. Sci. USA 107(51), 2210222105.CrossRefGoogle ScholarPubMed
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T. & Horikoshi, K. (2008). Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. USA 105(31), 1094910954.CrossRefGoogle Scholar
Valentine, D.L. (2007). Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol. 5(4), 316323.CrossRefGoogle ScholarPubMed
van de Vossenberg, J.L., Driessen, A.J. & Konings, W.N. (1998). The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2(3), 163170.CrossRefGoogle ScholarPubMed
Vieira-Silva, S. & Rocha, E.P.C. (2010). The systemic imprint of growth and its uses in ecological (meta) genomics. PLoS Genet. 6(1), e1000808.CrossRefGoogle ScholarPubMed
Wang, X., Minasov, G. & Shoichet, B.K. (2002). Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320(1), 8595.CrossRefGoogle ScholarPubMed
Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S. & Martin, W.F. (2016). The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1(16116), 18. DOI:10.1038/nmicrobiol.2016.116.CrossRefGoogle ScholarPubMed
White, R.H. (1984). Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250°C. Nature 310(5976), 430432.CrossRefGoogle Scholar
Wiggins, P. (2008). Life depends upon two kinds of water. PLoS ONE 3(1), e1406.CrossRefGoogle ScholarPubMed
Wolfenden, R. & Snider, M.J. (2001). The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34(12), 938945.CrossRefGoogle ScholarPubMed