Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T17:21:16.119Z Has data issue: false hasContentIssue false

Limits to biodiversity cycles from a unified model of mass-extinction events

Published online by Cambridge University Press:  14 January 2011

Georg Feulner
Affiliation:
Earth System Analysis, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, D-14412 Potsdam, Germany e-mail: [email protected]

Abstract

Episodes of species mass extinction dramatically affected the evolution of life on Earth, but their causes remain a source of debate. Even more controversy surrounds the hypothesis of periodicity in the fossil record, with conflicting views still being published in the scientific literature, often even based on the same state-of-the-art datasets. From an empirical point of view, limitations of the currently available data on extinctions and possible causes remain an important issue. From a theoretical point of view, it is likely that a focus on single extinction causes and strong periodic forcings has strongly contributed to this controversy. Here I show that if there is a periodic extinction signal at all, it is much more likely to result from a combination of a comparatively weak periodic cause and various random factors. Tests of this unified model of mass extinctions on the available data show that the model is formally better than a model with random extinction causes only. However, the contribution of the periodic component is small compared to factors such as impacts or volcanic eruptions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. (2008). Dynamics of origination and extinction in the marine fossil record. Proc. Nat. Acad. Sci. 105, 11536.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D.J., Foote, M., Fursich, F.T., Harries, P.J., Hendy, A.J.W., Holland, S.M., Ivany, L.C., Kiessling, W. et al. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97.Google Scholar
Arens, N.C. & West, I.D. (2008). Press-pulse: a general theory of mass extinction? Paleobiology 34, 456.CrossRefGoogle Scholar
Bailer-Jones, C.A.L. (2009). The evidence for and against astronomical impacts on climate change and mass extinctions: a review. Int. J. Astrobiol. 8, 213.Google Scholar
Bambach, R.K. (2006). Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127.CrossRefGoogle Scholar
Benzi, R., Parisi, G., Sutera, A. & Vulpiani, A. (1982). Stochastic resonance in climatic change. Tellus 34, 10.CrossRefGoogle Scholar
Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.Google Scholar
Chapman, C.R. (2004). The hazard of near-Earth asteroid impacts on earth. Earth Planet. Sci. Lett. 222, 1.Google Scholar
Cornette, J.L. (2007). Gauss–Vaníček and Fourier transform spectral analyses of marine diversity. Comput. Sci. Eng. 9, 61.CrossRefGoogle Scholar
Crowley, T.J. & North, G.R. (1988). Abrupt climate change and extinction events in earth history. Science 240, 996.CrossRefGoogle ScholarPubMed
Davis, M., Hut, P. & Muller, R.A. (1984). Extinction of species by periodic comet showers. Nature 308, 715.Google Scholar
Ellis, J. & Schramm, D.N. (1995). Could a nearby supernova explosion have caused a mass extinction? Proc. Natl. Acad. Sci. USA 92, 235.CrossRefGoogle ScholarPubMed
Ernst, R.E. & Buchan, K.L. (2001). Large mafic magmatic events through time and links to mantle plume-heads. In Mantle Plumes: Their Identification Through Time. Geological Society of America Special Paper 352, ed. Ernst, R.E. & Buchan, K.L., p. 483. Geological Society of America, Boulder, Colorado.CrossRefGoogle Scholar
Feulner, G. (2009). Climate-modelling of mass-extinction events: a review. Int. J. Astrobiol. 8, 207.CrossRefGoogle Scholar
Ganopolski, A. & Rahmstorf, S. (2002). Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett. 88, 038501.Google Scholar
Hallam, A. (1984). Pre-quaternary sea-level changes. Annu. Rev. Earth Planet. Sci. 12, 205.Google Scholar
Hallam, A. & Wignall, P.B. (1999). Mass extinctions and sea-level changes. Earth Sci. Rev. 48, 217.CrossRefGoogle Scholar
Heisler, J., Tremaine, S. & Alcock, C. (1987). The frequency and intensity of comet showers from the Oort cloud. Icarus. 70, 269.Google Scholar
Holling, C.S. (1973). Resilience and stability of ecological systems. Annu. Rev. Ecol. System 4, 1.Google Scholar
Kaib, N.A. & Quinn, T. (2009). Reassessing the source of long-period comets. Science 325, 1234.CrossRefGoogle ScholarPubMed
Lieberman, B.S. & Melott, A.L. (2007). Considering the case for biodiversity cycles: re-examining the evidence for periodicity in the fossil record. PLoS ONE, 2, e759.Google Scholar
Martin, O., Cardenas, R., Guimarais, M., Peñate, L., Horvath, J. & Galante, D. (2010). Effects of gamma ray bursts in Earth's biosphere. Astrophys. Space Sci. 326, 61.CrossRefGoogle Scholar
May, R.M. (1977). Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471.Google Scholar
Medvedev, M.V. & Melott, A.L. (2007). Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys. J. 664, 879.Google Scholar
Melott, A.L. (2008). Long-term cycles in the history of life: periodic biodiversity in the paleobiology database. PLoS ONE 3, e4044.Google Scholar
Melott, A.L. & Bambach, R.K. (2010). Nemesis reconsidered. Mont. Not. R. Astron. Soc. 407, L99.Google Scholar
Melott, A.L. & Bambach, R.K. (2011). A ubiquitous ∼62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiol. 37, 92 (preprint arXiv:1005.4393).Google Scholar
Melott, A.L. & Thomas, B.C. (2009). Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage. Paleobiology 35, 311.Google Scholar
Napier, W.M. & Clube, S.V.M. (1979). A theory of terrestrial catastrophism. Nature 282, 455.CrossRefGoogle Scholar
Omerbashich, M. (2006). Gauss–Vaníček spectral analysis of the sepkoski compendium: no new life cycles. Comput. Sci. Eng. 8, 26.CrossRefGoogle Scholar
Overholt, A.C., Melott, A.L. & Pohl, M. (2009). Testing the link between terrestrial climate change and galactic spiral arm transit. Astrophys. J. Lett. 705, L101.Google Scholar
Peters, S.E. (2008). Environmental determinants of extinction selectivity in the fossil record. Nature 454, 626.CrossRefGoogle ScholarPubMed
Peters, S.E. & Foote, M. (2002). Determinants of extinction in the fossil record. Nature 416, 420.Google Scholar
Prokoph, A., Ernst, R.E. & Buchan, K.L. (2004). Time-series analysis of large igneous provinces: 3500 Ma to present. J. Geol. 112, 1.Google Scholar
Rampino, M.R. & Stothers, R.B. (1984). Terrestrial mass extinctions, cometary impacts and the sun's motion perpendicular to the galactic plane. Nature 308, 709.Google Scholar
Raup, D.M. & Sepkoski, J.J. (1982). Mass extinctions in the marine fossil record. Science 215, 1501.Google Scholar
Raup, D.M. & Sepkoski, J.J. (1984). Periodicity of Extinctions in the Geologic Past. Proc. Natl. Acad. Sci. USA 81, 801.CrossRefGoogle ScholarPubMed
Rohde, R.A. & Muller, R.A. (2005). Cycles in fossil diversity. Nature 434, 208.Google Scholar
Schaeffer, N. & Manga, M. (2001). Interaction of rising and sinking mantle plumes. Geophys. Res. Lett. 28, 455.Google Scholar
Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature 413, 591.Google Scholar
Smith, A.B. & McGowan, A.J. (2005). Cyclicity in the fossil record mirrors rock outcrop area. Biol. Lett. 1, 443.CrossRefGoogle ScholarPubMed
Toon, O.B., Zahnle, K., Morrison, D., Turco, R.P. & Covey, C. (1997). Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. 35, 41.CrossRefGoogle Scholar
van Nes, E.H. & Scheffer, M. (2004). Large species shifts triggered by small forces. Am. Nat. 164, 255.CrossRefGoogle ScholarPubMed
White, R. & Saunders, A. (2005). Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos 79, 299.Google Scholar
Whitmire, D.P. & Jackson, A.A. (1984). Are periodic mass extinctions driven by a distant solar companion? Nature 308, 713.Google Scholar
Wignall, P. (2004). Causes of mass extinctions. In Extinctions in the History of Life, ed. Taylor, P., pp 119150. Cambridge University Press, Cambridge.Google Scholar
Wignall, P. (2005). Volcanism and mass extinctions. In Volcanoes and the Environment, ed. Martí, J. & Ernst, G., pp. 207226. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Wignall, P.B. & Twitchett, R.J. (1996). Oceanic anoxia and the end permian mass extinction. Science 272, 1155.CrossRefGoogle ScholarPubMed