Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T17:08:04.512Z Has data issue: false hasContentIssue false

Life's chirality from prebiotic environments

Published online by Cambridge University Press:  02 October 2012

Marcelo Gleiser*
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
Sara Imari Walker
Affiliation:
NASA Astrobiology Institute, USA BEYOND: Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA

Abstract

A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bada, J.L. (1997). Science 275, 942.CrossRefGoogle Scholar
Blackmond, D. (2004). Proc. Natl Acad. Sci. U.S.A. 101, 5732.Google Scholar
Bonner, W.A. (1995). The quest for chirality. In Physical Origin of Homochirality in Life, ed. Cline, D., AIP Conference Proceedings 379, AIP Press, New York.Google Scholar
Brandenburg, A. & Multamäki, T. (2004). Int. J. Astrobiol. 3, 209.Google Scholar
Brandenburg, A., Lehto, H.J. & Lehto, K.M. (2007). Astrobiology 7, 725.Google Scholar
Bywater, R.P. & Conde-Frieboes, K. (2005). Astrobiology 5, 568.CrossRefGoogle Scholar
Cassan, A. et al. (2012). Nature 481, 167169; http://kepler.nasa.gov/Google Scholar
Charnley, S.B., Rogers, S.D., Kuan, Y.-J. & Huang, H.-C. (2002). Adv. Space Res. 30, 1419.CrossRefGoogle Scholar
Chyba, C. & Sagan, C. (1992). Nature 355, 125.CrossRefGoogle Scholar
Cline, D.B. (ed.) (1995). Physical origin of homochirality in life. In AIP Conference Proceedings 379, AIP Press, New York.Google Scholar
Cohen, J. (1995). Science 267, 1265.Google Scholar
Corliss, J.B., Baross, J.A. & Hoffman, S.E. (1981). Oceanol. Acta 4, 59.Google Scholar
Cronin, J.R. (1989). Adv. Space Res. 9, 59.Google Scholar
Davies, P.C.W. & Lineweaver, C.H. (2005). Astrobiology 5, 154.Google Scholar
Dunitz, J.D. (1996). Proc. Natl Acad. Sci. U.S.A. 93, 14260.CrossRefGoogle Scholar
Eldredge, N. & Gould, S.J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In Models in Paleobiology, ed. Schopf, T.J.M., Freeman Cooper, San Francisco, Ch. 5.Google Scholar
Fishkis, M. (2007). Orig. Life Evol. Biosph. 37, 537.Google Scholar
Fitz, D., Reiner, H., Plakensteiner, K. & Rode, B. (2007). Curr. Chem. Biol. 1, 41.Google Scholar
Fox, S. (1973). Pure Appl. Chem 34, 641.Google Scholar
Fox, S. (1995). J. Bio. Physics 20, 17.CrossRefGoogle Scholar
Frank, F. (1953). Biochim. Biophys. Acta 11, 459.Google Scholar
Fraser, D.G., Fitz, D., Jakschitz, T., Rode, B.M. (2011). Phys. Chem. Chem. Phys. 13, 831.CrossRefGoogle Scholar
Gilbert, W. (1986). Nature 319, 618.CrossRefGoogle Scholar
Gleiser, M. & Thorarinson, J. (2006). Orig. Life Evol. Biosph. 36, 501.CrossRefGoogle Scholar
Gleiser, M. & Walker, S.I. (2008). Orig. Life Evol. Biosph. 38, 293.Google Scholar
Gleiser, M. & Walker, S.I. (2009). Orig. Life Evol. Biosph. 39, 479.Google Scholar
Gleiser, M. (2012). Int. J. Astrobiol. 11, 345.Google Scholar
Gleiser, M., Nelson, B. & Walker, S.I. (2012). Chiral polymerization in open systems from chiral-selective reaction rates, Orig. Life Evol. Biosph 42, 333346.CrossRefGoogle ScholarPubMed
Gleiser, M. (2007). Orig. Life Evol. Biosph. 37, 235.CrossRefGoogle Scholar
Gleiser, M., Thorarinson, J. & Walker, S.I. (2008). Orig. Life Evol. Biosph. 38, 499508 [arXiv:0802.1446].Google Scholar
Gould, S.J. (1991). Natural History, 100, 12.Google Scholar
Haken, M. (1983). Synergetics: An Introduction, Springer-Verlag, Berlin.Google Scholar
Hochberg, D. & Zorzano, M.P. (2007). Phys. Rev. E 76, 0211109.Google Scholar
Hochberg, D. (2009). Phys. Rev. Lett. 102, 248101.CrossRefGoogle Scholar
Hochberg, D. (2010) Phys. Rev. E 81, 016106.Google Scholar
Joyce, G.F. et al. (1984). Nature 310, 602.Google Scholar
Joyce, G.F. (1991). New Bio. 3, 399.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108.CrossRefGoogle Scholar
Kimura, M. (1968). Nature 217, 624.Google Scholar
Kondepudi, D.K. & Asakura, K. (2001). Acc. Chem. Res. 34, 946.Google Scholar
Kondepudi, D.K. & Nelson, G.W. (1985). Nature 314, 438441.CrossRefGoogle Scholar
Kondepudi, D.K. & Nelson, G.W. (1983). Phys. Rev. Lett. 50, 1023.Google Scholar
Lahav, M. (2007). Orig. Life Evol. Biosph. 37, 371.CrossRefGoogle Scholar
Lazcano, A. & Miller, S.L. (1996). Cell 85, 793.Google Scholar
Lineweaver, C.H. & Davis, T.M. (2002). Astrobiology 3, 293.Google Scholar
Lineweaver, C.H. (2001). Icarus 151, 307.Google Scholar
Lucas, P.W. et al. (2005). Orig. Life Evol. Biosph. 35, 29.CrossRefGoogle Scholar
Maher, K.A. & Stevenson, D.J. (1988). Nature 331, 612.CrossRefGoogle Scholar
Marcy, G. et al. (2005). Prog. Theor. Phys. Suppl. 158, 24.CrossRefGoogle Scholar
Miller, S.L. (1953). Science 117, 528.CrossRefGoogle Scholar
Monnard, P.A. & Deamer, D. (2002). Anatom. Rec. 268, 196.Google Scholar
Monnard, P.A. (2007). Orig. Life Evol. Biosph. 37, 387.CrossRefGoogle Scholar
Morowitz, H.J., Heinz, B. & Deamer, D. (1988). Orig. Life Evol. Biosph 18, 281.CrossRefGoogle Scholar
Nielsen, P.E. (2007). Orig. Life Evol. Biosph. 37, 323.Google Scholar
Nilsson, M. et al. (2005). Int. J. Astrobiol. 4, 233.Google Scholar
Orgel, L.E. (1998a). Orig. Life Evol. Biosph. 28, 91.CrossRefGoogle Scholar
Orgel, L.E. (1998b). Trends Biochem. Sci. 23, 491.CrossRefGoogle Scholar
Orgel, L. (2000). Science 290, 1306.CrossRefGoogle Scholar
Pasteur, L. (1848). Ann. Chim. Phys. 24, 442.Google Scholar
Plasson, R. et al. (2007). Chirality 19, 589.Google Scholar
Plasson, R., Bersini, H. & Commeyras, A. (2004). Proc. Natl Acad. Sci. U.S.A. 101, 16733.Google Scholar
Ring, D., Wolman, Y., Friedmann, N. & Miller, S.L. (1972). Proc. Natl Acad. Sci. U.S.A. 69, 765.Google Scholar
Robertson, M.P. & Miller, S.L. (1995). Nature 375, 772.CrossRefGoogle Scholar
Saito, Y. & Hyuga, H. (2005a). J. Phys. Soc. Japan 74, 535.Google Scholar
Saito, Y. & Hyuga, H. (2005b). J. Phys. Soc. Japan 74, 1629.Google Scholar
Salam, A. (1991). J. Mol. Evol. 33, 105.Google Scholar
Sandars, P.G.H. (2003). Orig. Life Evol. Biosph. 33, 575.Google Scholar
Satyanarayana, T., Raghukumar, C. & Shivaji, S. (2005). Curr. Sci. 89, 78.Google Scholar
Schopf, J.W. (1993a). Science 260, 640.Google Scholar
Schopf, J.W. (1993b). The Earth's Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, NJ.Google Scholar
Sleep, N.H. et al. (1989). Nature 342, 139.Google Scholar
Soai, K., Shibata, T., Choji, K. & Morioka, H. (1995). Nature 378, 767.Google Scholar
Trevors, J.T. (1997). Antonie van Leeuwenhoek 72, 251.Google Scholar
van Zuilen, M.A., Lepland, A. & Arrhenius, G. (2002). Nature 420, 202.Google Scholar
Viedma, C. (2005). Phys. Rev. Lett. 94, 065504.Google Scholar
Wächtershäuser, G. (1992). Prog. Biophys. Mol. Biol. 58, 85.Google Scholar
Wattis, J.A. & Coveney, P.V. (2005). Orig. Life Evol. Biosph. 35, 243.CrossRefGoogle Scholar
Welsh, C.J. & Lunine, J.I. (2001). Enantiomer 6, 6981.Google Scholar
Wilde, S.A., Valley, J.W., Peck, W.H. & Graham, C.M. (2005). Nature 409, 175.Google Scholar
Wolman, Y., Haverland, H. & Miller, S.L. (1972). Proc. Natl Acad. Sci. U.S.A. 69, 809.Google Scholar
Yamagata, Y. (1966). J. Theoret. Biol. 11, 495498.Google Scholar