Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T02:42:15.011Z Has data issue: false hasContentIssue false

The influence of galactic cosmic rays on ion–neutral hydrocarbon chemistry in the upper atmospheres of free-floating exoplanets

Published online by Cambridge University Press:  03 April 2014

P. B. Rimmer*
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
Ch. Helling
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
C. Bilger
Affiliation:
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Abstract

Cosmic rays may be linked to the formation of volatiles necessary for prebiotic chemistry. We explore the effect of cosmic rays in a hydrogen-dominated atmosphere, as a proof-of-concept that ion–neutral chemistry may be important for modelling hydrogen-dominated atmospheres. In order to accomplish this, we utilize Monte Carlo cosmic ray transport models with particle energies of 106 eV<E<1012 eV in order to investigate the cosmic-ray enhancement of free electrons in substellar atmospheres. Ion–neutral chemistry is then applied to a Drift–Phoenix model of a free-floating giant gas planet. Our results suggest that the activation of ion–neutral chemistry in the upper atmosphere significantly enhances formation rates for various species, and we find that C2H2, C2H4, NH3, C6H6 and possibly C10H are enhanced in the upper atmospheres because of cosmic rays. Our results suggest a potential connection between cosmic-ray chemistry and the hazes observed in the upper atmospheres of various extrasolar planets. Chemi-ionization reactions are briefly discussed, as they may enhance the degree of ionization in the cloud layer.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikawa, Y., Umebayashi, T., Nakano, T. & Miyama, S.M. (1999). Evolution of molecular abundances in proto-planetary disks with accretion flow. Astrophys. J. 519(2), 705.Google Scholar
Bean, J.L., Miller-Ricci Kempton, E. & Homeier, D. (2010). A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature 468, 669672.Google Scholar
Bilger, C., Rimmer, P. & Helling, C. (2013). Small hydrocarbon molecules in cloud-forming brown dwarf and giant gas planet atmospheres. Mon. Not. R. Astron. Soc. 435, 18881903.Google Scholar
Borucki, W.J., Levin, Z., Whitten, R.C., Keesee, R.G., Capone, L.A., Summers, A.L., Toon, O.B. & Dubach, J. (1987). Predictions of the electrical conductivity and charging of the aerosols in Titan's atmosphere. Icarus 72, 604622.Google Scholar
Capone, L.A., Dubach, J., Whitten, R.C., Prasad, S.S. & Santhanam, K. (1980). Cosmic ray synthesis of organic molecules in Titan's atmosphere. Icarus 44, 7284.Google Scholar
Capone, L.A., Dubach, J., Prasad, S.S. & Whitten, R.C. (1983). Galactic cosmic rays and N2 dissociation on Titan. Icarus 55, 7382.Google Scholar
Dehn, M. (2007). PhD Thesis, University of Hamburg.Google Scholar
Demory, B.-O. et al. (2011). The high Albedo of the hot Jupiter Kepler-7 b. Astrophys. J. 735, L12.Google Scholar
Frenklach, M. & Feigelson, E.D. (1989). Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341, 372384.Google Scholar
Gredel, R., Lepp, S., Dalgarno, A. & Herbst, E. (1989). Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules. Astrophys. J. 347, 289293.Google Scholar
Gurnett, D.A., Shaw, R.R., Anderson, R.R. & Kurth, W.S. (1979). Whistlers observed by Voyager 1 – detection of lightning on Jupiter. Geophys. Res. Lett. 6, 511514.Google Scholar
Harada, N., Herbst, E. & Wakelam, V. (2010). A new network for higher-temperature gas-phase chemistry. I. A preliminary study of accretion disks in active galactic nuclei. Astrophys. J. 721, 15701578.Google Scholar
Helling, C. et al. (2008). A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres. Mon. Not. R. Astron. Soc. 391, 18541873.Google Scholar
Helling, C., Jardine, M. & Mokler, F. (2011). Ionization in atmospheres of brown dwarfs and extrasolar planets. II. Dust-induced collisional ionization. Astrophys. J. 737, 38.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life: Steps towards Panspermia. Kluwer Academic Publishers, Dordrecht.Google Scholar
Krestinin, A.V. (2000). Detailed modeling of soot formation in hydrocarbon pyrolysis. Combust. Flame 121(3), 513.Google Scholar
Lavvas, P., Yelle, R.V. & Vuitton, V. (2009). The detached haze layer in Titan's mesosphere. Icarus 201, 626633.Google Scholar
Liang, M.-C., Yung, Y.L. & Shemansky, D.E. (2007). Photolytically generated aerosols in the mesosphere and thermosphere of Titan. Astrophys. J. 661, L199L202.Google Scholar
Lodders, K. (2004). Jupiter formed with more tar than ice. Astrophys. J. 611, 587597.Google Scholar
MacGregor, M. & Berry, R.S. (1973). Formation of HCO+ by the associative ionization of CH+O. J. Phys. B At. Mol. Phys. 6, 181196.Google Scholar
McElroy, D., Walsh, C., Markwick, A.J., Cordiner, M.A., Smith, K. & Millar, T.J. (2013). The UMIST database for astrochemistry 2012. Astron. Astrophys. 550, A36.Google Scholar
Millar, T.J., Farquhar, P.R.A. & Willacy, K. (1997). The UMIST database for astrochemistry 1995. Astron. Astrophys. Suppl. 121, 139185.Google Scholar
Miller, S.L. & Cleaves, H.J. (2006). Prebiotic chemistry on the primitive earth. Syst. Biol.: Vol. I: Genom.: Vol. I: Genom. 1, 1.Google Scholar
Molina-Cuberos, G.J., López-Moreno, J.J., Rodrigo, R. & Lara, L.M. (1999a). Chemistry of the galactic cosmic ray induced ionosphere of Titan. J. Geophys. Res. 104, 2199722024.Google Scholar
Molina-Cuberos, G.J., López-Moreno, J.J., Rodrigo, R., Lara, L.M. & O'Brien, K. (1999b). Ionization by cosmic rays of the atmosphere of Titan. Planet. Space Sci. 47(10–11), 1347.Google Scholar
Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H. & Allen, M. (2000). Photochemistry of Saturn's atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus 143, 244298.Google Scholar
Moses, J.I., Fouchet, T., Bézard, B., Gladstone, G.R., Lellouch, E. & Feuchtgruber, H. (2005). Photochemistry and diffusion in Jupiter's stratosphere: constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. (Planets) 110, 8001.Google Scholar
Moses, J.I. et al. (2011). Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15.Google Scholar
Orgel, L.E. (1998). The origin of lifeâ€'a review of facts and speculations. Trends Biochem. Sci. 23(12), 491495.Google Scholar
Pont, F., Knutson, H., Gilliland, R.L., Moutou, C. & Charbonneau, D. (2008). Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the HubbleSpaceTelescope. Mon. Not. R. Astron. Soc. 385, 109118.Google Scholar
Porco, C.C. et al. (2005). Imaging of Titan from the Cassini spacecraft. Nature 434, 159168.Google Scholar
Prasad, S.S. & Tarafdar, S.P. (1983). UV radiation field inside dense clouds – its possible existence and chemical implications. Astrophys. J. 267, 603609.Google Scholar
Rages, K. & Pollack, J.B. (1983). Vertical distribution of scattering hazes in Titan's upper atmosphere. Icarus 55, 5062.Google Scholar
Rimmer, P. & Helling, C. (2013). Ionization in atmospheres of Brown Dwarfs and extrasolar planets IV. The Effect of Cosmic Rays. ArXiv e-prints.Google Scholar
Rimmer, P.B., Herbst, E., Morata, O. & Roueff, E. (2012). Observing a column-dependent ζ in dense interstellar sources: the case of the Horsehead nebula. A&A 537, A7.Google Scholar
Showman, A.P., Fortney, J.J., Lian, Y., Marley, M.S., Freedman, R.S., Knutson, H.A. & Charbonneau, D. (2009). Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564584.Google Scholar
Shull, J.M. & Hollenbach, D.J. (1978). H2 cooling, dissociation, and infrared emission in shocked molecular clouds. Astrophys. J. 220, 525537.Google Scholar
Shumilov, O.I., Kasatkina, E.A., Henriksen, K. & Vashenyuk, E.V. (1996). Enhancement of stratospheric aerosols after solar proton event. Ann. Geophys. 14, 11191123.Google Scholar
Sing, D.K. et al. (2011). Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. Mon. Not. R. Astron. Soc. 416, 14431455.Google Scholar
Sittler, E.C., Hartle, R.E., Bertucci, C., Coates, A., Cravens, T., Dandouras, I. & Shemansky, D. (2010). Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere, p. 393.Google Scholar
Skilling, J. & Strong, A.W. (1976). Cosmic ray exclusion from dense molecular clouds. Astron. Astrophys. 53, 253258.Google Scholar
Stark, C.R., Helling, C., Diver, D.A. & Rimmer, P.B. (2013). ApJ. 776, 11.Google Scholar
Velinov, P.I.Y. & Mateev, L.N. (2008). Improved cosmic ray ionization model for the system ionosphere atmosphere – calculation of electron production rate profiles. J. Atmos. Sol.-Terres. Phys. 70, 574582.Google Scholar
Velinov, P.I.Y., Mishev, A. & Mateev, L. (2009). Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere. Adv. Space Res. 44, 10021007.Google Scholar
Venot, O., Hébrard, E., Agùndez, M., Dobrijevic, M., Selsis, F., Hersant, F., Iro, N. & Bounaceur, R. (2012). A chemical model for the atmosphere of hot Jupiters. ArXiv e-prints.Google Scholar
Vidotto, A.A., Fares, R., Jardine, M., Donati, J.-F., Opher, M., Moutou, C., Catala, C. & Gombosi, T.I. (2012). The stellar wind cycles and planetary radio emission of the τ Boo system. Mon. Not. R. Astron. Soc. 423, 32853298.Google Scholar
Visscher, C. & Moses, J.I. (2011). Quenching of carbon monoxide and methane in the atmospheres of cool brown dwarfs and hot Jupiters. Astrophys. J. 738(1), 72.Google Scholar
Wakelam, V., Selsis, F., Herbst, E. & Caselli, P. (2005). Estimation and reduction of the uncertainties in chemical models: application to hot core chemistry. Astron. Astrophys. 444, 883891.Google Scholar
Wakelam, V. et al. (2012). A KInetic Database for astrochemistry (KIDA). Astrophys. J. Suppl. 199, 21.Google Scholar
Whitten, R.C., Borucki, W.J., O'Brien, K. & Tripathi, S.N. (2008). Predictions of the electrical conductivity and charging of the cloud particles in Jupiter's atmosphere. J. Geophys. Res. (Planets) 113, 4001.Google Scholar
Wilson, E.H. & Atreya, S.K. (2003). Chemical sources of haze formation in Titan's atmosphere. Planet. Space Sci. 51, 10171033.Google Scholar
Witte, S., Helling, C. & Hauschildt, P.H. (2009). Dust in brown dwarfs and extra-solar planets. II. Cloud formation for cosmologically evolving abundances. Astron. Astrophys. 506, 13671380.Google Scholar
Woitke, P. & Helling, C. (2004). Dust in brown dwarfs. III. Formation and structure of quasi-static cloud layers. Astron. Astrophys.414, 335350.Google Scholar
Woitke, P., Kamp, I. & Thi, W.-F. (2009). Radiation thermo-chemical models of protoplanetary disks. I. Hydrostatic disk structure and inner rim. Astron. Astrophys. 501, 383406.Google Scholar
Woods, P.M. & Willacy, K. (2007). Benzene formation in the inner regions of protostellar disks. Astrophys. J. Lett. 655(1), L49.Google Scholar
Zahnle, K., Marley, M.S., Freedman, R.S., Lodders, K. & Fortney, J.J. (2009). Atmospheric sulfur photochemistry on hot Jupiters. Astrophys. J. 701, L20L24.Google Scholar