Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T21:54:58.008Z Has data issue: false hasContentIssue false

Implications of stellar activity for exoplanetary atmospheres

Published online by Cambridge University Press:  19 August 2010

P. Odert*
Affiliation:
Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
M. Leitzinger
Affiliation:
Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
A. Hanslmeier
Affiliation:
Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
H. Lammer
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
M.L. Khodachenko
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
I. Ribas
Affiliation:
Institut de Ciències de l'Espai (CSIC-IEEC), Facultat de Ciències, Torre C5, parell, 2a pl, Campus UAB, 08193 Bellaterra, Spain

Abstract

Stellar X-ray and extreme ultraviolet (XUV) radiation is an important driver of the escape of planetary atmospheres. Young stars emit high XUV fluxes that decrease as they age. Since the XUV emission of a young star can be orders of magnitude higher compared to an older one, this evolution has to be taken into account when studying the mass-loss history of a planet. The temporal decrease of activity is closely related to the operating magnetic dynamo, which depends on rotation and convection in Sun-like stars. Using a sample of nearby M dwarfs, we study the relations between age, rotation and activity and discuss the influence on planets orbiting these low-mass stars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Erkaev, N.V., Kulikov, Y.N., Lammer, H., Selsis, F., Langmayr, D., Jaritz, G.F. & Biernat, H.K. (2007). Astron. Astrophys. 472, 329334.CrossRefGoogle Scholar
Güdel, M. (2007). Living Rev. Solar Phys. 4, 3–137.CrossRefGoogle Scholar
Kiraga, M. & Stepien, K. (2007). Acta Astronom. 57, 149172.Google Scholar
Lammer, H., Penz, T., Wuchterl, G., Lichtenegger, H.I.M., Khodachenko, M.L., Kulikov, Y.N. & Micela, G. (2007). Preprint, arXiv:astro-ph/0701565.Google Scholar
Lammer, H. et al. (2009). Astron. Astrophys. 506, 399410.CrossRefGoogle Scholar
Lecavelier des Etangs, A. (2007). Astron. Astrophys. 461, 11851193.CrossRefGoogle Scholar
Mayor, M. & Queloz, D. (1995). Nature 378, 355359.CrossRefGoogle Scholar
Odert, P., Leitzinger, M., Hanslmeier, A., Lammer, H., Khodachenko, M.L. & Ribas, I. (2010a). ASP Conf. Ser. 43, in press.Google Scholar
Odert, P., Leitzinger, M., Hanslmeier, A., Lammer, H., Khodachenko, M.L. & Ribas, I. (2010b). Cent. Eur. Astrophys. Bull., in press.Google Scholar
Odert, P., Leitzinger, M., Hanslmeier, A., Lammer, H., Khodachenko, M.L., Ribas, I., Vanko, M., Konovalenko, A.A. & Rucker, H.O. (2008). Cent. Eur. Astrophys. Bull. 32, 149156.Google Scholar
Penz, T. & Micela, G. (2008). Astron. Astrophys. 479, 579584.CrossRefGoogle Scholar
Penz, T., Micela, G. & Lammer, H. (2008). Astron. Astrophys. 477, 309314.CrossRefGoogle Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S. & Ventura, P. (2003). Astron. Astrophys. 397, 147157.CrossRefGoogle Scholar
Reiners, A., Basri, G. & Browning, M. (2009). Astrophys. J. 692, 538545.CrossRefGoogle Scholar
Scalo, J. et al. (2007). Astrobiology 7, 85–166.CrossRefGoogle Scholar
Schmitt, J.H.M.M., Fleming, T.A. & Giampapa, M.S. (1995). Astrophys. J. 450, 392400.CrossRefGoogle Scholar
Schmitt, J.H.M.M. & Liefke, C. (2004). Astron. Astrophys. 417, 651665.CrossRefGoogle Scholar
Soderblom, D.R. (2010). Preprint, arXiv:1003.6074.Google Scholar
Tarter, J.C. et al. (2007). Astrobiology 7, 3065.CrossRefGoogle Scholar
Yelle, R., Lammer, H. & Ip, W. (2008). Space Sci. Rev. 139, 437451.CrossRefGoogle Scholar