Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T05:42:10.581Z Has data issue: false hasContentIssue false

Hydrocarbons on Mars

Published online by Cambridge University Press:  21 September 2023

Jaroslav Klokočník*
Affiliation:
Astronomical Institute, Czech Academy of Sciences, Fričova 298, CZ 251 65 Ondřejov, Czech Republic
Jan Kostelecký
Affiliation:
Research Institute of Geodesy, Topography and Cartography, CZ 250 66 Zdiby 98, Czech Republic Faculty of Mining and Geology, VSB-TU Ostrava, CZ 708 33 Ostrava, Czech Republic
Aleš Bezděk
Affiliation:
Astronomical Institute, Czech Academy of Sciences, Fričova 298, CZ 251 65 Ondřejov, Czech Republic
Václav Cílek
Affiliation:
Geological Institute, Czech Academy of Sciences, CZ 165 00 Praha 6, Rozvojová 269, Prague, Czech Republic
*
Corresponding author: Jaroslav Klokočník; Email: [email protected]

Abstract

Providing evidence for possible oil-type occurrences on Mars means providing an indication for the past life on Mars. We do this via analysis of the combed (aligned) gravity strike angles, one of the gravity (gravitational) aspects (descriptors) derived from one of the recent gravitational field models of Mars, currently having the highest accessible precision and resolution. After intensive testing for features on the Earth and the Moon, the gravity aspects are applied for Mars. We detect candidates for the groundwater/hydrocarbon/mud/petroleum-bearing sites in the largest areas with as many as possible combed gravity strike angles, uniformly ordered into ‘plates’. They appear mainly but not only in the hypothetical northern Martian palaeo-ocean (the northern lowlands). It turns out that the combed strike angles are sensitive not only to uniformly ordered sediments of the basins, but also to supposed lahars.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, O and Mojzsis, SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459, 419422.CrossRefGoogle ScholarPubMed
Allen, CC (1979) Volcano–ice interactions on Mars. Journal of Geophysical Research 30, 84. B 14.Google Scholar
Altermann, W (2007) The early Earth's record of supposed extremophilic bacteria and cyanobacteria, at 3.8 to 2.5 GA. In Seckbach, J (ed.), Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 11. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6112-7_41Google Scholar
Arnold, NS, Butcher, FEG, Conway, SJ, Gallagher, C and Balme, MR (2022) Surface topographic impact of subglacial water beneath the south polar ice cap of Mars. Nature Astronomy 6, 12561262. https://doi.org/10.1038/s41550-022-01782-0CrossRefGoogle Scholar
Baker, VR (2001) Water and the Martian landscape. Nature 412, 228236.CrossRefGoogle ScholarPubMed
Baker, VR, Strom, RG, Gulick, VC, Kargel, JS and Komatsu, G (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589594.CrossRefGoogle Scholar
Beiki, M and Pedersen, LB (2010) Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics 75, 137149.CrossRefGoogle Scholar
Blumenberg, M (2010) Microbial chemofossils in specific marine hydrothermal and methane cold seep settings. In Kile, S and Tyler, PA (eds), The Vent and Seep Biota. Topics in Geobiology, vol 33. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-9572-54Google Scholar
Brandenburg, JE (1987) The Paleo-Ocean of Mars, MECA Symposium on Mars: Evolution of its Climate and Atmosphere. Lunar and Planetary Institute, pp. 2022.Google Scholar
Brasier, MD, Green, OR, Lindsay, JF, McLoughlin, N, Jephcoat, AP, Kleppe, AK, Steele, A and Stoakes, CP (2005) Critical testing of Earth's oldest putative fossil assemblage from the 3.5 Ga Apex Chert, Chinaman Creek, Western Australia. Precambrian Research 140, 55102.CrossRefGoogle Scholar
Brož, P, Krýza, O, Wilson, L, SJ, Conway, Hauber, E, Mazzini, A, Raack, J, MR, Balme, ME, Sylvest and MR, Patel (2020) Experimental evidence for lava-like mud flows under Martian surface conditions. Nature Geoscience 13, 403407.CrossRefGoogle Scholar
Buczkowski, DL and McGill, GE (2003) Utopia Planitia: Observations and models favoring thick water-deposited sediments. University of Massachusetts, Amherst, Sixth International Conference on Mars.Google Scholar
Burt, DM (2022) Layered sediments on Mars deposited by impacts instead of by liquid water. In Foulger GR, Hamilton LC, Jurdy DM, Stein CA, Howard KA and Stein S (eds), In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science. Boulder, CO: The Geological Society of America, 553, pp. 347354; https://doi.org/10.1130/2021.2553(27); ISBN electronic: 9780813795539; ISBN print: 9780813725536.CrossRefGoogle Scholar
Carr, MH and Head, JW III (2003) Oceans on Mars: an assessment of the observational evidence and possible fate. Journal of Geophysical Research 108, 5042.CrossRefGoogle Scholar
Chela-Flores, J (2019) Testing S isotopes as biomarkers for Mars. International Journal of Astrobiology 18, 436439.CrossRefGoogle Scholar
Christiansen, EH (1989) Lahars in the Elysium region of Mars. Geology 17, 203206.2.3.CO;2>CrossRefGoogle Scholar
Citron, RI, Manga, M and Hemingway, DJ (2018 a) Timing of oceans on Mars from shoreline deformation. Nature 555, 643646.CrossRefGoogle ScholarPubMed
Citron, RI, Manga, M and Tan, E (2018 b) A hybrid origin of the Martian crustal dichotomy: degree-1 convection antipodal to a giant impact. Earth and Planetary Science Letters 491, 5866.CrossRefGoogle Scholar
Clifford, SM and Parker, TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 4079.CrossRefGoogle Scholar
Connerney, JEP, Acuna, MH, Ness, NF, Kletetschka, G, Mitchell, DL, Lin, RP and Reme, H (2005) Tectonic implications of Mars crustal magnetism. Proceedings of the National Academy of Sciences of the United States of America 102, 1497014975.CrossRefGoogle ScholarPubMed
Cuřín, V, Brož, P, Hauber, E and Markonis, Y (2023) Mud flows in southwestern Utopia Planitia, Mars. Icarus 389, 1. https://doi.org/10.1016/j.icarus.2022.115266CrossRefGoogle Scholar
Denton, C and Head, J (2018) Mapping the Fretted Terrain North of Arabia Terra, Mars: Results and Implications for Dichotomy Boundary Evolution. 49th Lunar and Planetary Science Conference (LPI Contrib. No. 2083). 1597.pdf.Google Scholar
Di Achille, G and Hynek, B (2010) Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience 3, 459463.CrossRefGoogle Scholar
Edgar, LA, Grotzinger, JP, Bell, JF and Hurowitz, JA (2014) Hypotheses for the origin of fine-grained sedimentary rocks at Santa Maria crater, Meridiani Planum. Icarus 234, 3644.CrossRefGoogle Scholar
Ehlmann, BL, JF, Mustard, SL, Murchie, J-P, Bibring, Meunier, A, AA, Fraeman and Langevin, Y (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 5360.CrossRefGoogle ScholarPubMed
Farley, KA, Stack, KM, Shuster, DL, Horgan, BHN, Hurowitz, JA, Tarnas, JD, Simon, JI, Sun, VZ, Scheller, EL, Moore, KR, McLennan, SM, Vasconcelos, PM, Wiens, RC, Treiman, AH, Mayhew, LE, Beyssac, O, Kizovski, TV, Tosca, NJ, Williford, KH, Crumpler, LS, Beegle, LW, Bell, JF, Ehlmann, BL, Liu, Y, Maki, JN, Schmidt, ME, Allwood, AC, Amundsen, HEF, Bhartia, R, Bosak, T, Brown, AJ, Clark, BC, Cousin, A, Forni, O, Gabriel, TSJ, Goreva, Y, Gupta, S, Hamran, S-E, Herd, CDK, Hickman-Lewis, K, Johnson, JR, Kah, LC, Kelemen, PB, Kinch, KB, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, MS, Russell, PS, Sharma, S, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, BP, Williams, AJ, Wogsland, BV, Willis, PA, Acosta-Maeda, TA, Beck, P, Benzerara, K, Bernard, S, Burton, AS, Cardarelli, EL, Chide, B, Clavé, E, Cloutis, EA, Cohen, BA, Czaja, AD, Debaille, V, Dehouck, E, Fairén, AG, Flannery, DT, Fleron, SZ, Fouchet, T, Frydenvang, J, Garczynski, BJ, Gibbons, EF, Hausrath, EM, Hayes, AG, Henneke, J, Jorgensen, JL, Kelly, EM, Lasue, J, Le Mouélic, S, Madariaga, JM, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, SM, Million, CC, Moeller, RC, Núnez, JI, Ollila, AM, Paar, G, Paige, DA, Pedersen, DAK, Pilleri, P, Pilorget, C, Pinet, PC, Rice, JW, Royer, C, Sautter, V, Schulte, M, Sephton, MA, Sharma, SK, Sholes, SF, Spanovich, N, St. Clair, M, Tate, CD, Uckert, K, VanBommel, SJ, Yanchilina, AG and Zorzano, M-P (2022) Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars. Science 377, 6614. eabo2196 (2022).CrossRefGoogle ScholarPubMed
Feldman, WC, Mellon, MT, Maurice, S, Prettyman, TH, Carey, JW, Vaniman, DT, Bish, DL, Fialips, CI, Chipera, SJ, Kargel, JS, Elphic, RC, Funsten, HO, Lawrence, DJ and Tokar, RL (2004) Hydrated states of MgSO4 at equatorial latitudes on Mars. Geophysical Research Letters 31, L16702. https://doi.org/10.1029/2004GL020181CrossRefGoogle Scholar
Förste, C, Bruinsma, S, Abrikosov, O, Lemoine, J-M, Schaller, T, Goetze, HJ, Ebbing, J, Marty, J-C, Flechtner, F, Balmino, G and Biancale, R (2014) The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (EIGEN 6C4). 5th GOCE user workshop, Paris, 25–28 November.Google Scholar
Forget, F, Haberle, RM, Montmessin, F, Levrard, B and Head, JW (2006) Formation of glaciers on mars by atmospheric precipitation at high obliquity. Science 311, 368371.CrossRefGoogle ScholarPubMed
Forget, F, Costard, F and Lognonné, P (2008) Planet Mars, Story of another World. Chichester: Springer and Praxis Publishing. ISBN 978-0-387-48925-4.Google Scholar
Frey, HV, Roark, JH, Shockey, KM, Frey, EL and Sakimoto, SEH (2002) Ancient lowlands on Mars. Geophysical Research Letters 29, 4.CrossRefGoogle Scholar
Galofre, A, Jellinek, AM and Osinski, GR (2020) Valley formation on early Mars by subglacial and fluvial erosion. Nature Geoscience 13, 663668. https://doi.org/10.1038/s41561-020-0618-xCrossRefGoogle Scholar
Ghatan, GJ and Zimbelman, JR (2006) Paucity of candidate coastal constructional landforms along proposed shorelines on Mars: implications for a northern lowlands-filling ocean. Icarus 185, 171196.CrossRefGoogle Scholar
Haberle, RM, Clancy, RT, Forget, F, Smith, MD and Zurek, RW (eds) (2017) The Atmosphere and Climate of Mars. United Kingdom: Cambridge University Press. https://doi.org/10.1017/9781139060172CrossRefGoogle Scholar
Head, JW, Hiesinger, H, Ivanov, MA, Kreslavsky, MA, Pratt, S and Thomson, BJ (1999) Possible ancient oceans on Mars: evidence from Mars orbiter laser altimeter data. Science 286, 21342137.CrossRefGoogle ScholarPubMed
Heinz, J and Schulze-Makuch, J (2020) Thiophenes on Mars: biotic or abiotic origin? Astrobiology 20, 552561. https://doi.org/10.1089/ast.2019.2139CrossRefGoogle ScholarPubMed
Herkenhoff, KE, Squyres, SW, Arvidson, R, Bass, DS, Bell, JF, Bertelsen, P, Ehlmann, BL, Farrand, W, Gaddis, L, Greeley, R, Grotzinger, J, Hayes, AG, Hviid, SF, Johnson, JR, Jolliff, B, Kinch, KM, Knoll, AH, Madsen, MB, Maki, JN, McLennan, SM, McSween, HY, Ming, DW, Rice, JW, Richter, L, Sims, M, Smith, PH, Soderblom, LA, Spanovich, N, Sullivan, R, Thompson, S, Wdowiak, T, Weitz, C and Whelley, P (2004) Evidence from Opportunity's microscopic imager for water on Meridian Planum. Science 306, 17271730.CrossRefGoogle Scholar
Hunt, JM (1996) Petroleum Geochemistry and Geology. New York: W. H. Freeman and Company, 332 pp.Google Scholar
Irwin, RP III and Watters, TR (2010) Geology of the Martian crustal dichotomy boundary: age, modifications, and implications for modeling efforts. Journal of Geophysical Research 115, El 1006. doi: 10.1029/2010JE003658CrossRefGoogle Scholar
Irwin, RP, Maxwell, TA, Howard, AD, Craddock, RA and Leverington, DW (2002) A large Paleolake basin at the head of Ma'adim Vallis, Mars. Science 296, 22092212.CrossRefGoogle ScholarPubMed
Kalvoda, J, Klokočník, J, Kostelecký, J and Bezděk, A (2013) Mass distribution of Earth landforms determined by aspects of the geopotential as computed from the global gravity field model EGM 2008. Acta Universitatis Carolinae Geographica 48, 1725.Google Scholar
Kite, ES, Rafkin, S, Michaels, TI, Dietrich, WE and Manga, M (2011) Chaos terrain, storms, and past climate on Mars. Journal of Geophysical Research 116, E10002.CrossRefGoogle Scholar
Kletetschka, G, Klokočník, J, Hasson, N, Kostelecký, J, Bezděk, A and Karimi, K (2022) Distribution of water phase near the poles of the Moon from gravity aspects. Scientific Reports 12, 4501.CrossRefGoogle ScholarPubMed
Klingelhöfer, G, Morris, RV, Bernhardt, B, Schröder, C, Rodionov, DS, de Souza, PA, Yen, A, Gellert, R, Evlanov, EN, Zubkov, B, Foh, J, Bonnes, U, Kankeleit, E, Gütlich, P, Ming, DW, Renz, F, Wdowiak, T, Squyres, SW and Arvidson, RE (2004) Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science 306, 17401745.CrossRefGoogle ScholarPubMed
Klokočnik, J, Bezděk, A and Kostelecky, J (2022 b) Gravity field aspects for identification of cosmic impact structures on Earth. In Foulger, GR, Hamilton, LC, Jurdy, DM, Stein, CA, Howard, KA and Stein, S (eds). The Footsteps of Warren B. Hamilton: New Ideas in Earth Science. Boulder, CO: Geological Society of America, pp. 251260, https://doi.org/10.1130/2021.2553(21)CrossRefGoogle Scholar
Klokočník, J and Kostelecký, J (2014) Gravity signal at Ghawar, Saudi Arabia, from the global gravitational field model EGM 2008 and similarities around. Arabian Journal of Geosciences doi: 10.1007/s12517-014-1491-y.Google Scholar
Klokočník, J, Kostelecký, J and Bezděk, A (2017 a) Gravitational Atlas of Antarctica. Cham, Switzerland: Springer-Verlag, 113 pp.; ISBN: 978-3-319-56639-9.CrossRefGoogle Scholar
Klokočník, J, Kostelecký, J, Cílek, V, Bezděk, A and Pešek, I (2017 b) A support for the existence of paleolakes and paleorivers buried under Saharan sand by means of gravitational signal from EIGEN 6C4. Arabian Journal of Geosciences 10, 199.CrossRefGoogle Scholar
Klokočník, J, Kostelecký, J, Cílek, V, Bezděk, A and Pešek, I (2018) Gravito-topographic signal of the Lake Vostok area, Antarctica, with the most recent data. Polar Science 17, 5974.CrossRefGoogle Scholar
Klokočník, J, Kostelecký, J and Bezděk, A (2019) The putative Saginaw impact structure, Michigan, Lake Huron, in the light of gravity aspects derived from recent EIGEN 6C4 gravity field model. Journal of Great Lakes Research; https://doi.org/10.1016/j.jglr.2018.11.013Google Scholar
Klokočník, J, Kostelecký, J and Cílek, V (2020 a) Subglacial and underground structures detected from recent gravito-topography data. Newcastle upon Tyne, UK: Cambridge SP. ISBN (10): 1-5275-4948-8; ISBN (13): 978-1-5275-4948-7.Google Scholar
Klokočník, J, Kostelecký, J, Bezděk, A and Kletetschka, G (2020 b) Gravity strike angles: a modern approach and tool to estimate the direction of impactors of meteoritic craters. Planetary and Space Science 194, 105113. https://doi.org/10.1016/j.pss.2020.105113CrossRefGoogle Scholar
Klokočník, J, Kostelecký, J, Bezděk, A, Cílek, V, Kletetschka, G and Staňková, H (2020 c) Support for two subglacial impact craters in northwest Greenland from Earth gravity model EIGEN 6C4 and other data. Tectonophysics 780, 228396. https://doi.org/10.1016/j.tecto.2020.228396CrossRefGoogle Scholar
Klokočník, J, Kostelecký, J, Bezděk, A and Kletetschka, G (2021 a) Artefacts in gravity field modelling. Acta Geodynamica et Geomaterialia 18, 511524.CrossRefGoogle Scholar
Klokočník, J, Kostelecký, J, Bezděk, A and Cílek, V (2021 b) The spatial distribution of the strike angles derived from EIGEN 6C4 gravity model – a new possibility for oil and gas exploration? International Journal of Oil, Gas and Coal Technology 28, 306332.CrossRefGoogle Scholar
Klokočník, J, Kostelecký, J, Cílek, V, Kletetschka, G and Bezděk, A (2022 a) Gravity aspects from a recent gravity field model GRGM1200A of the Moon and analysis of magnetic data. Icarus 384, 115086.CrossRefGoogle Scholar
Klokočník, J, Kletetschka, G, Kostelecký, J, Bezděk, A and Karimi, K (2022 c) Gravity and magnetic fields of Mars – new findings. No. EGU22-1708, Vienna.CrossRefGoogle Scholar
Klokočník, J, Kostelecký, J, Cílek, V, Bezděk, A and Kletetschka, G (2022 d) Atlas of the Gravity and Magnetic Fields of the Moon. Switzerland: Springer, 263 pp., ISBN: 978-3-031-08867-4; https://doi.org/10.1007/978-3-031-08867-4_2CrossRefGoogle Scholar
Klokočník, J, Kletetschka, G, Kostelecký, J and Bezděk, A (2023) Gravity aspects for Mars. Icarus 406, 115729.CrossRefGoogle Scholar
Konopliv, A, Park Ryan, S, Rivoldini, A, Baland, R-M, Le Maistre, S and Van Hoolst, T (2020) Detection of the chandler wobble of Mars from orbiting spacecraft. Geophysical Research Letters 47, 19. https://doi.org/10.1029/2020GL090568CrossRefGoogle Scholar
Kramer, MG, Potter, CS, Marais, DD and Peterson, D (2003) New insight on Mars: a network of ancient lakes and discontinuous river segments. Eos 84, 16.CrossRefGoogle Scholar
Langlais, B, Thébault, E, Houliez, A, Purucker, ME and Lillis, RJ (2019) A new model of the crustal magnetic field of Mars using MGS and MAVEN. The Journal of Geophysical Research Planets 124, 15421569.CrossRefGoogle ScholarPubMed
Lauro, SE, Pettinelli, E, Caprarelli, G, Guallini, L, Rossi, AP, Mattei, E, Cosciotti, B, Cicchetti, A, Soldovieri, F, Cartacci, M, Di Paolo, F, Noschese, R and Orosei, R (2021) Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nature Astronomy 5, 6370. (2021). https://doi.org/10.1038/s41550-020-1200-6CrossRefGoogle Scholar
Lemoine, FG, Smith, DE, Rowlands, DD, Zuber, MT, Neumann, GA, Chinn, DS and Pavlis, DE (2001) An improved solution of the gravity field of Mars (GMM-2B) from Mars global surveyor. The Journal of Geophysical Research Planets 106, 2335923376.CrossRefGoogle Scholar
Lemoine, FG, Goossens, S, Sabaka, TJ, Nicholas, JB, Mazarico, E, Rowlands, DD, Loomis, BD, Chinn, DS, Neumann, GA, Smith, DE and Zuber, MT (2014) GRGM900C: a degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophysical Research Letters 41, 33823389.CrossRefGoogle ScholarPubMed
Liu, Y, Wu, X, Zhao, Y-YS, Pan, L, Wang, C, Liu, J, Zhao, Z, Zhou, X, Zhang, C, Wu, Y, Wan, W and Zou, Y (2022) Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Science Advances 8, 19.Google ScholarPubMed
McCollom, TM (2018) Geochemical trends in the burns formation layered sulfate deposits at Meridiani Planum, Mars, and implications for their origin. The Journal of Geophysical Research Planets 123, 23932429.CrossRefGoogle Scholar
McCollom, TM and Hynek, B (2021) Geochemical data indicate highly similar sediment compositions for the Grasberg and Burns formations on Meridiani Planum, Mars. Earth and Planetary Science Letters 557, 13.CrossRefGoogle Scholar
McGovan, JF (2020) Oil and natural gas on Mars. Proc. SPIE, 4137, 63–74, Instruments, Methods, and Missions for Astrobiology III, ed. R. B. Hoover, doi: 10.1117/12.41161CrossRefGoogle Scholar
Mittlefehldt, DW, Gellert, R, vanBommel, S, Ming, DW, Yen, AS, Clark, BC, Morris, RV, Schröder, C, Crumpler, LS, Grant, JA, Jolliff, BL, Arvidson, RE, Farrand, WH, Herkenhoff, KE, Bell, JF, Cohen, BA, Klingelhöfer, G, Schrader, CM and Rice, JW (2018) Diverse lithologies and alteration events on the rim of Noachian-aged Endeavour crater, Meridiani Planum, Mars: in situ compositional evidence. The Journal of Geophysical Research Planets 123, 12551306.CrossRefGoogle Scholar
Mojzsis, SJ and Arrhenius, G (1998) Phosphates and carbon on Mars: exobiological implications and sample return considerations. The Journal of Geophysical Research Planets 103, 2849528511. https://doi.org/10.1029/98JE02141CrossRefGoogle Scholar
Montmessin, F, Smith, MD, Langevin, Y, Mellon, MT and Fedorova, A (2017) The Water Cycle. Asteroids, Comets, Meteors – ACM2017 295–337, https://doi.org/10.1017/9781139060172.011CrossRefGoogle Scholar
Murchie, SL, Mustard, JF, Ehlmann, BL, Milliken, RE, Bishop, JL, McKeown, NK, Noe Dobrea, EZ, Seelos, FP, Buczkowski, DL, Wiseman, SM, Arvidson, RE, Wray, JJ, Swayze, G, Clark, RN, Des Marais, DJ, McEwen, AS and Bibring, J-P (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars reconnaissance orbiter. The Journal of Geophysical Research Planets 114, E00D06. https://doi.org/10.1029/2009JE003342CrossRefGoogle Scholar
Nakano, H, Hirakawa, N, Matsubara, Y, Yamashita, S, Okuchi, T, Asahina, K, Tanaka, R, Suzuki, N, Naraoka, H, Takano, Y, Tachibana, S, Hama, T, Oba, Y, Kimura, Y, Watanabe, N and Kouchi, A (2020) Precometary organic matter: a hidden reservoir of water inside the snow line. Scientific Reports 10, 7755.CrossRefGoogle Scholar
Nazari-Sharabian, M, Aghababaei, M, Karakouzian, M and Karami, M (2020) Water on Mars – a literature review. Galaxies 8, 40. https://doi.org/10.3390/galaxies8020040CrossRefGoogle Scholar
Orosei, R, Lauro, SE, Pettinelli, E, Cicchetti, A, Coradini, M, Cosciotti, B, Di Paolo, F, Flamini, E, Mattei, E, Pajola, M, Soldovieri, F, Cartacci, M, Cassenti, F, Frigeri, A, Giuppi, S, Martufi, R, Masdea, A, Mitri, G, Nenna, C, Noschese, R, Restano, M and Seu, R (2018) Radar evidence of subglacial liquid water on Mars. Science 361, 490493.CrossRefGoogle ScholarPubMed
Parker, TJ, Gorsline, DS, Saunders, RS, Pieri, DC and Schneeberger, DM (1993) Coastal geomorphology of the Martian northern plains. The Journal of Geophysical Research Planets 98, 1106111078.CrossRefGoogle Scholar
Pedersen, GBM (2013) Frozen Martian lahars? Evaluation of morphology, degradation and geologic development in the Utopia–Elysium transition zone. Planetary and Space Science 85, 5977.CrossRefGoogle Scholar
Pedersen, BD and Rasmussen, TM (1990) The gradient tensor of potential field anomalies: some implications on data collection and data processing of maps. Geophysics 55, 15581566.CrossRefGoogle Scholar
Robert, WM and Bushnell, DM (2016) Frontier in-situ resource utilization for enabling sustained human presence on Mars. NASA/TM–2016-219182, Langley Research Center, Hampton, VI.Google Scholar
Rossi, AP, Neukum, G, Pondrelli, M, van Gasselt, S, Zegers, T, Hauber, E, Chicarro, A and Foing, B (2008) Large-scale spring deposits on Mars? The Journal of Geophysical Research Planets 113, E08016. https://doi.org/10.1029/2007JE003062CrossRefGoogle Scholar
Seckbach, J and Chela-Flores, J (2012) Habitable environments by extremophiles on Earth, the solar system, and elsewhere. In Seckbach J (ed.), Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2941-4_43CrossRefGoogle Scholar
Schopf, WJ (2006) Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B 361, 869885.CrossRefGoogle ScholarPubMed
Smith, DE, Zuber, MT, Frey, HV, Garvin, JB, Head, JW, Muhleman, DO, Pettengill, GH, Phillips, RJ, Solomon, SC, Zwally, HJ, Banerdt, WB, Duxbury, TC, Golombek, MP, Lemoine, FG, Neumann, GA, Rowlands, DD, Aharonson, O, Ford, PG, Ivanov, AB, Johnson, CL, McGovern, PJ, Abshire, JB, Afzal, RS and Sun, X (2001). Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. The Journal of Geophysical Research Planets 106, 2368923722.CrossRefGoogle Scholar
Squyres, SW, Grotzinger, JP, Arvidson, RE, Bell, JF, Calvin, W, Christensen, PR, Clark, BC, Crisp, JA, Farrand, WH, Herkenhoff, KE, Johnson, JR, Klingelhöfer, G, Knoll, AH, McLennan, SM, McSween, HY, Morris, RV, Rice, JW, Rieder, R and Soderblom, LA (2004) In situ evidence for an ancient aqueous environment at Meridian Planum, Mars. Science 306, 17091714.CrossRefGoogle Scholar
USGS (2003) Topographic Map of Mars M 25 M RKN, US Geological Survey, Public Repository. Available at https://pubs.usgs.gov›imap›i2782_sh1; https://doi.org/10.3133/ofr02282CrossRefGoogle Scholar
Van Kranendonk, MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton. West Australian Earth Science Review 74, 197240.CrossRefGoogle Scholar
Villanueva, GL, Mumma, MJ, Novak, RE, Käufl, HU, Hartogh, P, Encrenaz, T, Tokunaga, A, Khayat, A and Smith, MD (2015) Strong water isotopic anomalies in the Martian atmosphere. Science 348, 218221.CrossRefGoogle ScholarPubMed
Viviano-Beck, CE, Seelos, FP, Murchie, SL, Kahn, EG, Seelos, KD, Taylor, HW, Taylor, K, Ehlmann, BL, Wisemann, SM, Mustard, JF and Morgan, MF (2014) CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. The Journal of Geophysical Research Planets 119, 14031431.CrossRefGoogle Scholar
Vogt, GL (2008) Landscapes of Mars, A Visual Tour. New York, USA: Springer.Google Scholar
Westall, F, Foucher, F, Bost, N, Bertrand, M, Loizeau, D, Vago, JL, Kminek, G, Gaboyer, F, Campbell, KA, Bréhéret, J-G, Gautret, P and Cockell, CS (2015) Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15, 9981029.CrossRefGoogle ScholarPubMed
Witze, A (2022) NASA spacecraft records epic ‘marsquakes’ as it prepares to die. Nature 27. https://doi.org/10.1038/d41586-022-03447-4Google Scholar
Zuber, MT (2018) Oceans on Mars formed early. Nature 555, 590591.CrossRefGoogle ScholarPubMed
Zurek, RW, Tolson, RA, Bougher, SW, Lugo, RA, Baird, DT, Bell, JM and Jakosky, BM (2017) Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research: Space Physics 122, 37983814. https://doi.org/10.1002/2016JA023641Google Scholar